A086592 Denominators in left-hand half of Kepler's tree of fractions.
2, 3, 3, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 7, 7, 11, 11, 13, 13, 14, 14, 13, 13, 17, 17, 15, 15, 18, 18, 11, 11, 16, 16, 17, 17, 19, 19, 14, 14, 19, 19, 18, 18, 21, 21, 8, 8, 13, 13, 16, 16, 17, 17, 17, 17, 22, 22, 19, 19, 23
Offset: 1
References
- Johannes Kepler, Mysterium cosmographicum, Tuebingen, 1596, 1621, Caput XII.
- Johannes Kepler, Harmonice Mundi, Linz, 1619, Liber III, Caput II.
- Johannes Kepler, The Harmony of the World [1619], trans. E. J. Aiton, A. M. Duncan and J. V. Field, American Philosophical Society, Philadelphia, 1997, p. 163.
Links
- Johannes Kepler, Harmonices mundi libri V ... (A Latin original scanned in Internet Archive. The fraction-tree is illustrated on the page 27 of the third book (Liber III), which is on the page 117 of the PDF-document.)
- Johannes Kepler, Excerpt from the Chapter II of the Book III of the Harmony of the World: On the seven harmonic divisions of the string (Illustrates the A020651/A086592-tree).
- OEIS Wiki, Historical sequences
- Pelegrí Viader, Jaume Paradís and Lluís Bibiloni, A New Light on Minkowski's ?(x) Function, J. Number Theory, 73 (2) (1998), 212-227. See p. 215.
- Index entries for fraction trees
- Index entries for sequences related to music
Crossrefs
Programs
-
Mathematica
(* b = A020650 *) b[1] = 1; b[2] = 2; b[3] = 1; b[n_] := b[n] = Switch[ Mod[n, 4], 0, b[n/2 + 1] + b[n/2], 1, b[(n - 1)/2 + 1], 2, b[(n - 2)/2 + 1] + b[(n - 2)/2], 3, b[(n - 3)/2]]; a[n_] := b[2n]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016 *)
-
R
maxlevel <- 15 d <- c(1,2) for(m in 0:maxlevel) for(k in 1:2^m) { d[2^(m+1) +k] <- d[k] + d[2^m+k] d[2^(m+1)+2^m+k] <- d[2^(m+1)+k] } b <- vector() for(m in 0:maxlevel) for(k in 0:(2^m-1)) b[2^m+k] <- d[2^(m+1)+k] a <- vector() for(n in 1:2^maxlevel) {a[2*n-1] <- b[n]; a[2*n] <- b[n+1]} a[1:128] # Yosu Yurramendi, May 16 2018
Formula
Extensions
Entry revised by N. J. A. Sloane, May 24 2004
Comments