A086596 An invariant of the set {Log(2), Log(3), Log(5),..., Log(Prime(2n)), Log(Prime(2n+1))}.
1, -1, 3, -8, 22, -53, 158, -481, 1471, -4621, 14612
Offset: 1
Links
- A. Besser, P. Moree, On an invariant related to a linear inequality, Arch. Math. 79: pp. 463-471
- D. Gijswijt and P. Moree, A set-theoretic invariant, arXiv:math/0309318 (2003)
Crossrefs
Cf. A068101.
Programs
-
Mathematica
Invariant[a_List] := Module[{i=1, j=2, xMin, xMax, aa, n, invar=0, signs, x}, xMin=Abs[a[[i]]-a[[j]]]; xMax=a[[i]]+a[[j]]; aa=Complement[a, {a[[i]], a[[j]]}]; n=Length[aa]; Do[signs=(2*IntegerDigits[k, 2, n]-1); x=aa.signs; If[x>xMin&&x
Formula
a(t)=(-1)^t/2 sum_{d|p_1...p_t, d <= sqrt{p_1...p_t} mu(d).
Comments