A086597 Number of primitive prime factors in Fibonacci(n).
0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 1
Offset: 1
Keywords
Examples
a(19) = 2 because Fibonacci(19) = 37*113 and neither 37 nor 113 divide a smaller Fibonacci number.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- R. D. Carmichael, On the numerical factors of the arithmetic forms α^n ± β^n, Annals of Math., 15 (1/4) (1913), 30-70.
- Blair Kelly, Fibonacci and Lucas Factorizations
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Programs
-
Mathematica
pLst={}; Join[{0, 0}, Table[f=Transpose[FactorInteger[Fibonacci[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 3, 150}]]
-
PARI
a(n)=my(t=fibonacci(n),g); fordiv(n,d, if(d==n, break); g=fibonacci(d); while((g=gcd(g, t))>1, t /= g)); omega(t) \\ Charles R Greathouse IV, Oct 06 2016
Formula
a(n) = 0 if and only if n = 1, 2, 6, or 12, by Carmichael's theorem. - Jonathan Sondow, Dec 07 2017
Comments