cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086597 Number of primitive prime factors in Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 1
Offset: 1

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

A prime factor of Fibonacci(n) is called primitive if it does not divide Fibonacci(r) for any r < n. It can be shown that there is at least one primitive prime factor for n > 12. When n is prime, all the prime factors of Fibonacci(n) are primitive; see A080345 for a count of these.

Examples

			a(19) = 2 because Fibonacci(19) = 37*113 and neither 37 nor 113 divide a smaller Fibonacci number.
		

Crossrefs

Cf. A022307 (number of distinct prime factors), A038575 (number of prime factors, counting multiplicity), A061446 (primitive part of Fibonacci(n)), A080345.

Programs

  • Mathematica
    pLst={}; Join[{0, 0}, Table[f=Transpose[FactorInteger[Fibonacci[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 3, 150}]]
  • PARI
    a(n)=my(t=fibonacci(n),g); fordiv(n,d, if(d==n, break); g=fibonacci(d); while((g=gcd(g, t))>1, t /= g)); omega(t) \\ Charles R Greathouse IV, Oct 06 2016

Formula

a(n) = Sum{d|n} mu(n/d) A022307(d), inverse Mobius transform of A022307.
a(n) = 0 if and only if n = 1, 2, 6, or 12, by Carmichael's theorem. - Jonathan Sondow, Dec 07 2017