cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001605 Indices of prime Fibonacci numbers.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677, 14431, 25561, 30757, 35999, 37511, 50833, 81839, 104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353, 3244369, 3340367
Offset: 1

Views

Author

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
Since F(n) divides F(mn) (cf. A001578, A086597), all terms of this sequence are primes except for a(2) = 4 = 2 * 2 but F(2) = 1. - M. F. Hasler, Dec 12 2007
What is the next larger twin prime after F(4) = 3, F(5) = 5, F(7) = 13? The next candidates seem to be F(104911) or F(1968721) (greater of a pair), or F(397379), F(931517) (lesser of a pair). - M. F. Hasler, Jan 30 2013, edited Dec 24 2016, edited Sep 23 2017 by Bobby Jacobs
_Henri Lifchitz_ confirms that the data section gives the full list (49 terms) as far as we know it today of indices of prime Fibonacci numbers (including proven primes and PRPs). - N. J. A. Sloane, Jul 09 2016
Terms n such that n-2 is also a term are listed in A279795. - M. F. Hasler, Dec 24 2016
There are no Fibonacci numbers that are twin primes after F(7) = 13. Every Fibonacci prime greater than F(4) = 3 is of the form F(2*n+1). Since F(2*n+1)+2 and F(2*n+1)-2 are F(n+2)*L(n-1) and F(n-1)*L(n+2) in some order, and F(n+2) > 1, L(n-1) > 1, F(n-1) > 1, and L(n+2) > 1 for n > 3. - Bobby Jacobs, Sep 23 2017
These primes are occurring with about the same normalized frequency as Repunit primes (see Generalized Repunit Conjecture Ref). Assuming a base=1.618 (ratio of sequential terms), then the best fit coefficient is 0.60324 for the first 56 terms, which is already approaching Euler's constant 0.56145948. - Paul Bourdelais, Aug 23 2024

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 54.
  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 178.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A046022.
Column k=1 of A303215.

Programs

  • Mathematica
    Select[Range[10^4], PrimeQ[Fibonacci[#]] &] (* Harvey P. Dale, Nov 20 2012 *)
    (* Start ~ 1.8x faster than the above *)
    Select[Range[10^4], PrimeQ[#] && PrimeQ[Fibonacci[#]] &] (* Eric W. Weisstein, Nov 07 2017 *)
    Select[Prime[Range[PrimePi[10^4]]], PrimeQ[Fibonacci[#]] &] (* Eric W. Weisstein, Nov 07 2017 *)
    (* End *)
  • PARI
    v=[3,4]; forprime(p=5,1e5, if(ispseudoprime(fibonacci(p)), v=concat(v,p))); v \\ Charles R Greathouse IV, Feb 14 2011
    
  • PARI
    is_A001605(n)={n==4 || isprime(n) & ispseudoprime(fibonacci(n))}  \\ M. F. Hasler, Sep 29 2012

Formula

Prime(i) = a(n) for some n <=> A080345(i) <= 1. - M. F. Hasler, Dec 12 2007

Extensions

Additional comments from Robert G. Wilson v, Aug 18 2000
More terms from David Broadhurst, Nov 08 2001
Two more terms (148091 and 201107) from T. D. Noe, Feb 12 2003 and Mar 04 2003
397379 from T. D. Noe, Aug 18 2003
433781, 590041, 593689 from Henri Lifchitz submitted by Ray Chandler, Feb 11 2005
604711 from Henri Lifchitz communicated by Eric W. Weisstein, Nov 29 2005
931517, 1049897, 1285607 found by Henri Lifchitz circa Nov 01 2008 and submitted by Alexander Adamchuk, Nov 28 2008
1636007 from Henri Lifchitz March 2009, communicated by Eric W. Weisstein, Apr 24 2009
1803059 and 1968721 from Henri Lifchitz, November 2009, submitted by Alex Ratushnyak, Aug 08 2012
a(49)=2904353 from Henri Lifchitz, Jul 15 2014
a(50)=3244369 from Henri Lifchitz, Nov 04 2017
a(51)=3340367 from Henri Lifchitz, Apr 25 2018
a(52)-a(56) from Ryan Propper added by Paul Bourdelais, Aug 23 2024

A001602 Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m).

Original entry on oeis.org

3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67, 270, 139, 28, 284, 147, 44, 310
Offset: 1

Views

Author

Keywords

Comments

"[a(n)] is called by Lucas the rank of apparition of p and we know it is a divisor of, or equal to prime(n)-1 or prime(n)+1" - Vajda, p. 84. (Note that a(3)=5. This is the only exception.) - Chris K. Caldwell, Nov 03 2008
Every number except 1, 2, 6 and 12 eventually occurs in this sequence. See also A086597(n), the number of primitive prime factors of Fibonacci(n). - T. D. Noe, Jun 13 2008
For each prime p we have an infinite sequence of integers, F(i*a(n))/p, i=1,2,... See also A236479. For primes p >= 3 and exponents j >= 2, with k = a(n) and p = p(n), it appears that F(k*i*p^(j-1))/p^j is an integer, for i >= 0. For p = 2, F(k*i*p^(j-1))/p^(j+1) = integer. - Richard R. Forberg, Jan 26-29 2014 [Comments revised by N. J. A. Sloane, Sep 24 2015]
Let p=prime(n). a(n) is also a divisor of (p-1)/2 (if p mod 5 == 1 or 4) or (p+1)/2 (if p mod 5 == 2 or 3) if and only if p mod 4 = 1. - Seiichi Azuma, Jul 29 2014

Examples

			The 5th prime is 11 and 11 first divides Fib(10)=55, so a(5) = 10.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A051694, A001177, A086597, A194363 (entries Lucas).

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a001602 n = (+ 1) $ fromJust $
                findIndex ((== 0) . (`mod` a000040 n)) $ tail a000045_list
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    A001602 := proc(n)
        local i,p;
        p := ithprime(n);
        for i from 1 do
            if modp(combinat[fibonacci](i),p) = 0 then
                return i;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Table[k=1;While[!Divisible[Fibonacci[k],Prime[n]],k++];k,{n,70}] (* Harvey P. Dale, Feb 15 2012 *)
    (* a fast, but more complicated method *) MatrixPowerMod[mat_, n_, m_Integer] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest[IntegerDigits[n, 2]]], m]; FibMatrix[n_Integer, m_Integer] := MatrixPowerMod[{{0, 1}, {1, 1}}, n, m]; FibEntryPointPrime[p_Integer] := Module[{n, d, k}, If[PrimeQ[p], n = p - JacobiSymbol[p, 5]; d = Divisors[n]; k = 1; While[FibMatrix[d[[k]], p][[1, 2]] > 0, k++]; d[[k]]]]; SetAttributes[FibEntryPointPrime, Listable]; FibEntryPointPrime[Prime[Range[10000]]] (* T. D. Noe, Jan 03 2013 *)
    With[{nn=70,t=Table[{n,Fibonacci[n]},{n,500}]},Transpose[ Flatten[ Table[ Select[t,Divisible[#[[2]],Prime[i]]&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, May 31 2014 *)
  • PARI
    a(n)=if(n==3,5,my(p=prime(n));fordiv(p^2-1,d,if(fibonacci(d)%p==0, return(d)))) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    do(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k));for(i=1,#f[,1],for(j=1,f[i,2],if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k
    a(n)=do(prime(n))
    apply(do, primes(100)) \\ Charles R Greathouse IV, Jan 03 2013
    
  • Python
    from sympy.ntheory.generate import prime
    def A001602(n):
        a, b, i, p = 0, 1, 1, prime(n)
        while b % p:
            a, b, i = b, (a+b) % p, i+1
        return i # Chai Wah Wu, Nov 03 2015, revised Apr 04 2016.

Formula

a(n) = A001177(prime(n)).
a(n) <= prime(n) + 1. - Charles R Greathouse IV, Jan 02 2013

Extensions

More terms from Jud McCranie

A022307 Number of distinct prime factors of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
Offset: 0

Views

Author

Keywords

Comments

Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
Row lengths of table A060442. - Reinhard Zumkeller, Aug 30 2014
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
Cf. A060442, A086598 (omega(Lucas(n))).
Cf. A060320. - Jon E. Schoenfield, Dec 30 2016

Programs

  • Haskell
    a022307 n = if n == 0 then 0 else a001221 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Magma
    [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

a(n) = Sum{d|n} A086597(d), Mobius transform of A086597.
a(n) = A001221(A000045(n)) = omega(F(n)). - Jonathan Vos Post, Dec 06 2006

A038575 Number of prime factors of n-th Fibonacci number, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 1, 2, 2, 2, 1, 6, 1, 2, 3, 3, 1, 5, 2, 4, 3, 2, 1, 9, 3, 2, 4, 4, 1, 7, 2, 4, 3, 2, 3, 10, 3, 3, 3, 6, 2, 7, 1, 5, 5, 3, 1, 12, 3, 6, 3, 4, 2, 8, 4, 7, 5, 3, 2, 12, 2, 3, 5, 6, 3, 7, 3, 5, 5, 7, 2, 14, 2, 4, 6, 5, 4, 8, 2, 9, 7, 3, 1, 13, 4, 3, 4, 9, 2, 12, 5, 6, 4, 2, 6, 16, 4, 5, 6, 10, 2, 8
Offset: 0

Views

Author

Keywords

Comments

Row lengths of table A060441. - Reinhard Zumkeller, Aug 30 2014

Examples

			a(12) = 6 because Fibonacci(12) = 144 = 2^4 * 3^2 has 6 prime factors.
		

Crossrefs

Cf. A022307 (number of distinct prime factors), A086597 (number of primitive prime factors).
Cf. also A001222, A000045, A060441.

Programs

  • Haskell
    a038575 n = if n == 0 then 0 else a001222 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Maple
    with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(fibonacci(n)) fi end: seq(a(n), n=0..102); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    Join[{0, 0}, Table[Plus@@(Transpose[FactorInteger[Fibonacci[n]]][[2]]), {n, 3, 102}]]
    Join[{0},PrimeOmega[Fibonacci[Range[110]]]] (* Harvey P. Dale, Apr 14 2018 *)
  • PARI
    a(n)=bigomega(fibonacci(n)) \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    from sympy import primeomega, fibonacci
    def a(n): return 0 if n == 0 else primeomega(fibonacci(n))
    print([a(n) for n in range(103)]) # Michael S. Branicky, Feb 02 2022

Formula

For n > 0: a(n) = A001222(A000045(n)). - Reinhard Zumkeller, Aug 30 2014
a(n) >= A001222(n) - 1 (Lind, 1968). - Amiram Eldar, Feb 02 2022

A001578 Smallest primitive prime factor of Fibonacci number F(n), or 1 if F(n) has no primitive prime factor.

Original entry on oeis.org

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101
Offset: 1

Views

Author

Keywords

Comments

A prime factor of F(n) is called primitive if it does not divide F(r) for any r < n.
A Fibonacci number can have more than one primitive factor; the primitive factors of F(19) are 37 and 113.
From Robert Israel, Oct 13 2015: (Start)
Since gcd(F(n),F(k)) = F(gcd(n,k)), the non-primitive prime factors of F(n) are factors of F(k) for some proper divisors k of n.
Since prime p divides F(p-1) if p == 1 or 4 (mod 5), F(p+1) if p == 2 or 3 mod 5, F(p) if p = 5, we have a(n) >= n-1 if a(n) > 1.
a(n) = n-1 iff n=2 or n-1 is in A000057.
a(n) = n+1 iff n+1 is a prime in A106535. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A000057, A106535, A086597 (number of primitive prime factors in F(n)), A061488 (1's omitted), A262341 (largest primitive prime factor of F(n)).

Programs

  • Maple
    for n from 1 to 350 do
      f:= combinat:-fibonacci(n);
      if not isprime(n) then
        for k in map(t -> n/t, numtheory:-factorset(n)) do
           fk:= combinat:-fibonacci(k);
           g:= igcd(f,fk);
           while g > 1 do
             f:= f/g;
             g:= igcd(f,fk);
           od
        od
      fi;
      if f = 1 then A[n]:= 1; next fi;
      F:= map(t -> t[1],ifactors(f,easy)[2]);
      p:= select(type, F,integer);
      if nops(p) >= 1 then A[n]:= min(p); next fi;
      A[n]:= min(numtheory:-factorset(f));
    od:
    seq(A[i],i=1..350); # Robert Israel, Oct 13 2015
  • Mathematica
    prms={}; Table[f=First/@FactorInteger[Fibonacci[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 50}]
  • PARI
    a(n) = {my(v = vector(n, k, fibonacci(k))); my(vf = vector(n, k, factor(v[k])[,1]~)); for (k=1, n-1, vf[n] = setminus(vf[n], vf[k]);); if (#vf[n], vecmin(vf[n]), 1);} \\ Michel Marcus, May 11 2021

Formula

a(n) = 1 if and only if n = 1, 2, 6, or 12, by Carmichael's theorem. - Jonathan Sondow, Dec 07 2017

Extensions

Edited by T. D. Noe, Apr 15 2004
Definition clarified at the suggestion of Joerg Arndt by Jonathan Sondow, Oct 13 2015

A152012 Indices of Fibonacci numbers having exactly one primitive prime factor.

Original entry on oeis.org

3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 47, 48, 51, 52, 54, 56, 60, 62, 63, 65, 66, 72, 74, 75, 76, 82, 83, 93, 94, 98, 105, 106, 108, 111, 112, 119, 121, 122, 123, 124, 125, 131
Offset: 1

Views

Author

Max Alekseyev, Nov 19 2008

Keywords

Comments

It is known that Fibonacci number A000045(n) has a primitive prime factor for all n, except n=0, 1, 2, 6 and 12. This sequence lists such indices n that A000045(n) has exactly one primitive prime factor (equal A001578(n)). Sister sequence A152013 provides indices of Fibonacci numbers with at least 2 prime factors. The current sequence A152012 and its sister sequence A152013 along with the finite set {0,1,2,6,12} form a partition of the natural numbers.
Numbers k such that A086597(k) = 1.
For prime p, all prime factors of Fibonacci(p) are primitive. Hence, the only primes in this sequence are the prime numbers in A001605, which gives the indices of prime Fibonacci numbers.

Crossrefs

Programs

  • Mathematica
    primitivePrimeFactors[n_] := Cases[FactorInteger[Fibonacci[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[Fibonacci, n-1])]; Reap[For[n=3, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
  • PARI
    isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1;
    lista(nn) = {vp = []; for (n=3, nn, pf = factor(fibonacci(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014

A178763 Product of primitive prime factors of Fibonacci(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 23, 3001, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 107, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441, 64079
Offset: 1

Views

Author

T. D. Noe, Jun 10 2010

Keywords

Comments

Same as A001578 for the first 18 terms.
Let b(n) be the greatest divisor of Fibonacci(n) that is coprime to Fibonacci(m) for all positive integers m < n, then a(n) = b(n) for all n, provided that no Wall-Sun-Sun prime exists. Otherwise, if p is a Wall-Sun-Sun prime and A001177(p) = k (then A001177(p^2) = k), then p^2 divides b(k), but by definition a(k) is squarefree. - Jianing Song, Jul 02 2019

Crossrefs

Cf. A061446, A086597, A152012 (Indices of prime terms).

Programs

  • PARI
    a(n)=my(d=divisors(n), f=fibonacci(n), t); t=lcm(apply(fibonacci,d[1..#d-1])); while((t=gcd(t,f))>1, f/=t); f \\ Charles R Greathouse IV, Nov 30 2016

Formula

a(n) = A061446(n) / A178764(n).
a(n) = A061446(n) / gcd(A061446(n), n) if n != 5, 6, provided that no Wall-Sun-Sun prime exists. - Jianing Song, Jul 02 2019

A233281 Numbers n such that the least Fibonacci number F_k which is a multiple of n has a prime index, i.e., k is in A000040.

Original entry on oeis.org

2, 5, 13, 37, 73, 89, 113, 149, 157, 193, 233, 269, 277, 313, 353, 389, 397, 457, 557, 613, 673, 677, 733, 757, 877, 953, 977, 997, 1069, 1093, 1153, 1213, 1237, 1453, 1597, 1657, 1753, 1873, 1877, 1933, 1949, 1993, 2017, 2137, 2221, 2237, 2309, 2333, 2417, 2473
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

Numbers n such that A001177(n) is prime.
Each natural number n belongs to this sequence if the smallest Fibonacci number which it divides is a term of A030426. - Jon E. Schoenfield, Feb 28 2014
A092395 gives all the primes in this sequence (cf. Wikipedia-link), and the first composite occurs as the 69th term, where a(69)=4181 while A092395(69)=4273. After 4181 (= 37*113 = F_19), the next term missing from A092395 is a(148)=10877 (= 73*149. A001177(10877) = 37, F_37 = 24157817 = 2221*10877). Both of these numbers (4181 and 10877) occur in various lists of Fibonacci-related pseudoprimes. Sequence A238082 gives all composites occurring in this sequence.
If n is in this sequence then all divisors d > 1 of n are in this sequence. - Charles R Greathouse IV, Feb 04 2014
Composite members begin 4181, 10877, 75077, 162133, 330929, .... - Charles R Greathouse IV, Mar 07 2014

Crossrefs

Disjoint union of A092395 and A238082. The first 68 terms are identical with A092395, after which follows the first case of the latter sequence, with a(69) = A238082(1) = 4181.

Programs

  • Haskell
    a233281 n = a233281_list !! (n-1)
    a233281_list = filter ((== 1) . a010051 . a001177) [1..]
    -- Reinhard Zumkeller, Apr 04 2014
  • PARI
    is(n)=my(k); while(fibonacci(k++)%n, ); isprime(k) \\ Charles R Greathouse IV, Feb 04 2014
    
  • PARI
    entry(p)=my(k=1);while(fibonacci(k++)%p,);k;
    is(n)={
        if(n%2==0,return(n==2));
        if(n<13, return(n==5));
        my(f=factor(n),p,F);
        if(f[1,2]>1 && f[1,1]<1e14,return(0));
        p=entry(f[1,1]);
        F=fibonacci(p);
        if(f[1,2]>1 && F%f[1,1]^f[1,2],return(0));
        if(!isprime(p), return(0));
        for(i=2,#f~,
            if(F%f[i,1]^f[i,2],return(0))
        );
        1
    }; \\ Charles R Greathouse IV, Feb 04 2014
    

Formula

A010051(A001177(a(n))) = 1. - Reinhard Zumkeller, Apr 04 2014

A172115 Partial sums of A001605.

Original entry on oeis.org

3, 7, 12, 19, 30, 43, 60, 83, 112, 155, 202, 285, 416, 553, 912, 1343, 1776, 2225, 2734, 3303, 3874, 6845, 11568, 16955, 26266, 35943, 50374, 75935, 106692, 142691, 180202, 231035, 312874, 417785, 547806, 695897, 897004, 1294383, 1728164, 2318205, 2911894, 3516605
Offset: 1

Views

Author

Jonathan Vos Post, Jan 25 2010

Keywords

Examples

			a(1) = 3.
a(2) = 3 + 4 = 7.
a(3) = 3 + 4 + 5 = 12.
		

Crossrefs

Extensions

a(40) onwards from Amiram Eldar, Jul 22 2025

A174323 Numbers n such that omega(Fibonacci(n)) is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 11, 13, 17, 20, 23, 24, 27, 28, 29, 32, 43, 47, 52, 55, 74, 77, 80, 83, 84, 85, 87, 88, 91, 93, 96, 97, 100, 108, 115, 123, 131, 132, 137, 138, 143, 146, 149, 156, 157, 161, 163, 178, 184, 187, 189, 196, 197, 209, 211, 214, 215, 221, 222, 223, 232
Offset: 1

Views

Author

Michel Lagneau, Mar 15 2010

Keywords

Comments

Numbers n such that omega(A000045(n)) is a square, where omega(p) is the number of distinct prime factors of p (A001221). Remark: for the larger Fibonacci numbers F(n) (n > 300), the Maple program (below) is very slow. So we use a two-step process: factoring F(n) with the elliptic curve method, and then calculate the distinct prime factors.

Examples

			omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0,
omega(Fibonacci(3)) = omega(2) = 1,
omega(Fibonacci(20)) = omega(6765) = 4,
omega(Fibonacci(80)) = omega(23416728348467685) = 9.
		

References

  • Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors of n-th Fibonacci number, with multiplicity).
Cf. A022307 (number of distinct prime factors of n-th Fibonacci number), A086597 (number of primitive prime factors).

Programs

  • Magma
    [k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // Marius A. Burtea, Oct 15 2019
  • Maple
    with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)[2]): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od:
    # alternative:
    P[1]:= {}: count:= 1: res:= 1:
    for i from 2 to 300 do
      pn:= map(t -> i/t, numtheory:-factorset(i));
      Cprimes:= `union`(seq(P[t],t=pn));
      f:= combinat:-fibonacci(i);
      for p in Cprimes do f:= f/p^padic:-ordp(f,p) od;
      P[i]:= Cprimes union numtheory:-factorset(f);
      if issqr(nops(P[i])) then
         count:= count+1;
         res:= res, i;
      fi;
    od:
    res; # Robert Israel, Oct 13 2016
  • Mathematica
    Select[Range[200], IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* G. C. Greubel, May 16 2017 *)
  • PARI
    is(n)=issquare(omega(fibonacci(n))) \\ Charles R Greathouse IV, Oct 13 2016
    
Showing 1-10 of 13 results. Next