cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086606 Triangle, read by rows, where the n-th row is the first n terms of the n-th self-convolution of the sequence formed by flattening this triangle.

Original entry on oeis.org

1, 1, 2, 1, 3, 9, 1, 4, 14, 32, 1, 5, 20, 55, 140, 1, 6, 27, 86, 243, 630, 1, 7, 35, 126, 392, 1099, 2870, 1, 8, 44, 176, 598, 1808, 5048, 13256, 1, 9, 54, 237, 873, 2835, 8433, 23454, 61389, 1, 10, 65, 310, 1230, 4272, 13495, 39640, 109400, 286710, 1, 11, 77
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2003

Keywords

Examples

			This triangle begins:
1;
1, 2;
1, 3,  9;
1, 4, 14,  32;
1, 5, 20,  55, 140;
1, 6, 27,  86, 243,  630;
1, 7, 35, 126, 392, 1099, 2870;
1, 8, 44, 176, 598, 1808, 5048, 13256; ...
The g.f. A(x) of this sequence as a flat list of coefficients begins:
A(x) = 1 + x + 2*x^2 + x^3 + 3*x^4 + 9*x^5 + x^6 + 4*x^7 + 14*x^8 + 32*x^9 + x^10 + 5*x^11 + 20*x^12 + 55*x^13 + 140*x^14 +...
such that the coefficients in A(x)^n, n>=1, forms the table:
A^1: [(1),1,  2,   1,   3,    9,    1,     4,    14,     32, ...];
A^2: [(1, 2), 5,   6,  12,   28,   33,    52,    67,    164, ...];
A^3: [(1, 3,  9), 16,  33,   72,  125,   222,   330,    646, ...];
A^4: [(1, 4, 14,  32), 73,  164,  334,   660,  1152,   2184, ...];
A^5: [(1, 5, 20,  55, 140), 336,  755,  1625,  3195,   6315, ...];
A^6: [(1, 6, 27,  86, 243,  630),1532,  3546,  7635,  16020, ...];
A^7: [(1, 7, 35, 126, 392, 1099, 2870), 7092, 16443,  36666, ...];
A^8: [(1, 8, 44, 176, 598, 1808, 5048, 13256),32761,  77384, ...];
A^9: [(1, 9, 54, 237, 873, 2835, 8433, 23454, 61389),153007, ...]; ...
where the lower triangular portion equals this sequence.
		

Crossrefs

Cf. A086607 (main diagonal), A086608 (row sums).

Programs

  • PARI
    /* As a flattened triangle: */
    {a(n)=local(t=(sqrt(8*n+1)+1)\2,A=1+sum(k=1,min(n-1,t),a(k)*x^k));if(n==0,1,polcoeff((A+x*O(x^n))^t,n-t*(t-1)/2))}
    for(n=0,60,print1(a(n),", "))

A086608 Row sums of triangle A086606: the sum of the first n terms of the n-th self-convolution of the sequence formed by flattening triangle A086606.

Original entry on oeis.org

1, 3, 13, 51, 221, 993, 4530, 20939, 97285, 455133, 2140073, 10109361, 47933432, 227989548, 1087308518, 5197510491, 24895494553, 119461041021, 574151728723, 2763435409221, 13317800106750, 64257410265249, 310367127210417, 1500548876309897, 7261253691617671
Offset: 1

Views

Author

Paul D. Hanna, Jul 23 2003

Keywords

Examples

			Given A086606={1,_1,2,_1,3,9,_1,4,14,32,_1,5,20,55,140, ...},
a(2)=3=1+2 since A086606^2={1,2, ...},
a(3)=13=1+3+9 since A086606^3={1,3,9, ...},
a(4)=51=1+4+14+32 since A086606^4={1,4,14,32, ...},
a(5)=221=1+5+20+55+140 since A086606^5={1,5,20,55,140, ...}.
		

Crossrefs

Cf. A086606 (triangle), A086607 (diagonal).
Showing 1-2 of 2 results.