A086615 Antidiagonal sums of triangle A086614.
1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912, 1344379, 3701158, 10237540, 28436824, 79288843, 221836402, 622599625, 1752360040, 4945087837, 13988490338, 39658308814, 112666081616
Offset: 0
Keywords
Examples
a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614: {1}, {2,1}, {3,4,2}, {4,10,12,5}, {5,20,42,40,14}, {6,35,112,180,140,42}, ... For example, with n=2, the 5 ordered trees (A000108) on 3 edges are |...|..../\.../\.../|\.. |../.\..|......|........ |....................... Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields |...|..../\.../\../|\.. .../.\................. of which 4 are distinct. So a(2)=4. a(4)=8 because we have HHHH, HHUD, HUDH, HUHD
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6
- Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682, 2016
- K. Grygiel and P. Lescanne, A natural counting of lambda terms, SOFSEM 2016. Preprint 2015
Crossrefs
Programs
-
Maple
A086615 := proc(n) option remember; if n <= 3 then 2^n; else 3*(-n-1)*procname(n-1) +(-n+4)*procname(n-2) +3*(n-1)*procname(n-3) ; -%/(n+2) ; end if; end proc: seq(A086615(n),n=0..20) ; # R. J. Mathar, Nov 02 2021
-
Mathematica
CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
Formula
G.f.: A(x) = 1/(1-x)^2 + x^2*A(x)^2.
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+1, 2k+1)*binomial(2k, k)/(k+1). - Paul Barry, Nov 29 2004
a(n) = n + 1 + Sum_k a(k-1)*a(n-k-1), starting from a(n)=0 for n negative. - Henry Bottomley, Feb 22 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(j)*C(n-k, 2j). - Paul Barry, Aug 19 2005
From Paul Barry, May 31 2006: (Start)
G.f.: c(x^2/(1-x)^2)/(1-x)^2, c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} C(n+1,n-2k)*C(k). (End)
Binomial transform of doubled Catalan sequence 1,1,1,1,2,2,5,5,14,14,... - Paul Barry, Nov 17 2005
Row sums of Pascal-Catalan triangle A086617. - Paul Barry, Nov 17 2005
g(z) = (1-z-sqrt(1-2z-3z^2))/(2z-2z^2)/z - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007, corrected by Vaclav Kotesovec, Feb 13 2014
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +3*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3^(n+5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
Extensions
Edited by N. J. A. Sloane, Oct 16 2006
Comments