cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086615 Antidiagonal sums of triangle A086614.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912, 1344379, 3701158, 10237540, 28436824, 79288843, 221836402, 622599625, 1752360040, 4945087837, 13988490338, 39658308814, 112666081616
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Partial sums of the Motzkin sequence (A001006). - Emeric Deutsch, Jul 12 2004
a(n) is the number of distinct ordered trees obtained by branch-reducing the ordered trees on n+1 edges. - David Callan, Oct 24 2004
a(n) is the number of consecutive horizontal steps at height 0 of all Motzkin paths from (0,0) to (n,0) starting with a horizontal step. - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007
This sequence (with offset 1 instead of 0) occurs in Section 7 of K. Grygiel, P. Lescanne (2015), see g.f. N. - N. J. A. Sloane, Nov 09 2015
Also number of plain (untyped) normal forms of lambda-terms (terms that cannot be further beta-reduced.) [Bendkowski et al., 2016]. - N. J. A. Sloane, Nov 22 2017
If interpreted with offset 2, the INVERT transform is A002026 with offset 1. - R. J. Mathar, Nov 02 2021

Examples

			a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614:
{1},
{2,1},
{3,4,2},
{4,10,12,5},
{5,20,42,40,14},
{6,35,112,180,140,42}, ...
For example, with n=2, the 5 ordered trees (A000108) on 3 edges are
|...|..../\.../\.../|\..
|../.\..|......|........
|.......................
Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields
|...|..../\.../\../|\..
.../.\.................
of which 4 are distinct. So a(2)=4.
a(4)=8 because we have HHHH, HHUD, HUDH, HUHD
		

Crossrefs

Cf. A086614 (triangle), A086616 (row sums), A348869 (Seq. Transf.).
Cf. A001006.
Cf. A136788.

Programs

  • Maple
    A086615 := proc(n)
        option remember;
        if n <= 3 then
            2^n;
        else
            3*(-n-1)*procname(n-1) +(-n+4)*procname(n-2) +3*(n-1)*procname(n-3) ;
            -%/(n+2) ;
        end if;
    end proc:
    seq(A086615(n),n=0..20) ; # R. J. Mathar, Nov 02 2021
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

G.f.: A(x) = 1/(1-x)^2 + x^2*A(x)^2.
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+1, 2k+1)*binomial(2k, k)/(k+1). - Paul Barry, Nov 29 2004
a(n) = n + 1 + Sum_k a(k-1)*a(n-k-1), starting from a(n)=0 for n negative. - Henry Bottomley, Feb 22 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(j)*C(n-k, 2j). - Paul Barry, Aug 19 2005
From Paul Barry, May 31 2006: (Start)
G.f.: c(x^2/(1-x)^2)/(1-x)^2, c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} C(n+1,n-2k)*C(k). (End)
Binomial transform of doubled Catalan sequence 1,1,1,1,2,2,5,5,14,14,... - Paul Barry, Nov 17 2005
Row sums of Pascal-Catalan triangle A086617. - Paul Barry, Nov 17 2005
g(z) = (1-z-sqrt(1-2z-3z^2))/(2z-2z^2)/z - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007, corrected by Vaclav Kotesovec, Feb 13 2014
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +3*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3^(n+5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

Edited by N. J. A. Sloane, Oct 16 2006