A086618 a(n) = Sum{k=0..n} binomial(n,k)^2*C(k), where C() = A000108() are the Catalan numbers.
1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 2535078, 18758265, 141254655, 1079364105, 8350678170, 65298467487, 515349097713, 4100346740511, 32858696386766, 265001681344569
Offset: 0
Keywords
Examples
a(5) = 1118 = 1*1^2 + 1*5^2 + 2*10^2 + 5*10^2 + 14*5^2 + 42*1^2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.
- T. Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767 [math.CO], 2013.
- Z.-W. Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011. See (1.22).
- Z.-W. Sun, On sums of Apery polynomials and related congruences, J. Number Theory 132(2012), 2673-2699.
Crossrefs
Programs
-
Mathematica
Flatten[{1,RecurrenceTable[{(n+3)^2*(4*n+7)*a[n+2]==2*(20*n^3+117*n^2+220*n+135)*a[n+1]-9*(n+1)^2*(4*n+11)*a[n],a[1]==2,a[2]==7},a,{n,1,20}]}] (* Vaclav Kotesovec, Sep 11 2012 *) Table[HypergeometricPFQ[{1/2, -n, -n}, {1, 2}, 4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
-
PARI
a(n)=sum(k=0,n-1,binomial(n-1,k)^2*binomial(2*k,k)/(k+1)) \\ Charles R Greathouse IV, Sep 12 2012
-
PARI
a(n)=sum(k=0,n-1,(4*k+3)*sum(i=0,k,binomial(k,i)^2*binomial(2*i,i)))/3/n^2 \\ Charles R Greathouse IV, Sep 12 2012
Formula
Recurrence: (n+3)^2*(4*n+7)*a(n+2) = 2*(20*n^3+117*n^2+220*n+135)*a(n+1) - 9*(n+1)^2*(4*n+11)*a(n). - Vaclav Kotesovec, Sep 11 2012
a(n) ~ 3^(5/2)/(8*Pi) * 9^n/n^2. - Vaclav Kotesovec, Oct 06 2012
G.f.: (1-(1-9*x)^(1/3)*hypergeom([1/3,1/3],[1],-27*x*(1-x)^2/(1-9*x)^2))/(6*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([1/2,-n,-n], [1,2], 4). - Vladimir Reshetnikov, Oct 03 2016
D-finite with recurrence (n+1)^2*a(n) +(-19*n^2+8*n+6)*a(n-1) +9*(11*n^2-30*n+21)*a(n-2) -81*(n-2)^2*a(n-3)=0. - R. J. Mathar, Aug 01 2022
Extensions
Edited by N. J. A. Sloane, Sep 14 2012. The formula in the new definition was first sent in by Michael Somos, Feb 19 2004
Minor edits Vaclav Kotesovec, Mar 31 2014
Comments