A090897 Next n digits of Pi.
3, 14, 159, 2653, 58979, 323846, 2643383, 27950288, 419716939, 9375105820, 97494459230, 781640628620, 8998628034825, 34211706798214, 808651328230664, 7093844609550582, 23172535940812848, 111745028410270193, 8521105559644622948, 95493038196442881097
Offset: 1
Examples
a(3) = 159 because after the first (a(1) = 3) and the next two digits of Pi (a(2) = 14) the next three are 159. From _Aaron T Cowan_, Jan 03 2023: (Start) Other examples are as follows and fall into a triangular digit pattern, though there is no guarantee that they will remain triangular in all cases a(1) = 3; a(2) = 14; a(3) = 159; a(4) = 2653; a(5) = 58979; (End) Indeed, precisely whenever A086639(n) = 0, then the corresponding term of this sequence will lack one or more leading zeros and therefore the above list will deviate from the triangular shape. - _M. F. Hasler_, Jan 06 2023
Links
- Michel Marcus, Table of n, a(n) for n = 1..100
Programs
-
Maple
Partitioner := proc(cons, len) local i, R, spl; R := []; i:=0; spl := L -> [seq([seq(L[i], i=1 + n*(n+1)/2..(n+1)*(n+2)/2)], n=0..len)]: ListTools:-Reverse(convert(floor(cons*10^((len+1)*(len+2)/2)), base, 10)): map(`@`(parse, cat, op), spl(%)) end: aList := -> Partitioner(Pi, 20); aList(20); # Peter Luschny, Aug 22 2020
-
Mathematica
With[{pi=RealDigits[Pi,10,500][[1]]},FromDigits/@Table[Take[pi,{n (n-1)/2+1, (n(n+1))/2}],{n,25}]] (* Harvey P. Dale, Dec 24 2011 *)
-
PARI
lista(nn) = {my(nd = 5+nn*(nn+1)/2); default(realprecision, nd); my(vd = digits(floor(Pi*10^nd))); my(pos = 1); my(vr = vector(nn)); for (n=1, nn, vr[n] = fromdigits(vector(n, k, vd[k+ pos-1])); pos += n;); vr;} \\ Michel Marcus, Aug 21 2020
Formula
a(n) = floor( Pi * 10^(n*(n+1)/2-1) ) mod (10^n). - Carl R. White, Aug 13 2010
Comments