A086668 Number of divisors d of n such that 2d+1 is a prime.
1, 2, 2, 2, 2, 4, 1, 3, 3, 3, 2, 4, 1, 3, 4, 3, 1, 6, 1, 4, 3, 3, 2, 5, 2, 3, 3, 3, 2, 7, 1, 3, 4, 2, 3, 7, 1, 2, 3, 5, 2, 6, 1, 4, 5, 3, 1, 6, 1, 4, 3, 3, 2, 7, 3, 5, 2, 3, 1, 8, 1, 2, 5, 3, 3, 6, 1, 3, 4, 5, 1, 8, 1, 3, 5, 2, 2, 7, 1, 5, 4, 3, 2, 6, 2, 3, 3, 5, 2, 10, 1, 3, 2, 2, 3, 7, 1, 4, 6, 5
Offset: 1
Keywords
Examples
10 has divisors 1,2,5 and 10 of which 2.1+1, 2.2+1 and 2.5+1 are prime, so a(10)=3
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Table[Count[Divisors[n],?(PrimeQ[2#+1]&)],{n,100}] (* _Harvey P. Dale, Apr 29 2015 *)
-
PARI
for (n=2,100,s=0; fordiv(i=n,i,s+=isprime(2*i+1)); print1(","s))
-
PARI
A086668(n) = sumdiv(n,d,isprime(d+d+1)); \\ Antti Karttunen, Jun 15 2018
Formula
Extensions
Definition modified by Harvey P. Dale, Apr 29 2015
Comments