cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086695 a(n) = 100^n - 10^n - 1.

Original entry on oeis.org

89, 9899, 998999, 99989999, 9999899999, 999998999999, 99999989999999, 9999999899999999, 999999998999999999, 99999999989999999999, 9999999999899999999999, 999999999998999999999999, 99999999999989999999999999, 9999999999999899999999999999
Offset: 1

Views

Author

Maurice Mischler (maurice.mischler(AT)ima.unil.ch), Sep 12 2003

Keywords

Comments

Digits of the inverses of these numbers give the Fibonacci numbers. More precisely, the digits of 1/(10^(2*n)-10^n-1) give the Fibonacci numbers up to 10^n.
More generally, if x_1, x_2, x_n=x_(n-1)-x_(n-2) is any Lucas sequence, then the digits of the numbers (x_1*10^n-(x_1-x_2))/(10^(2*n)-10^n-1) give the x_n up to 10^n.
1/a(n) = Sum_{i>=1} A000045(i-1)/10^(n*i) (see Long paper). - Michel Marcus, May 01 2013

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Table[100^n-10^n-1,{n,20}] (* or *) LinearRecurrence[{111,-1110,1000},{89,9899,998999},20] (* Harvey P. Dale, Nov 16 2023 *)
  • PARI
    a(n)=100^n-10^n-1 \\ Charles R Greathouse IV, May 01 2013

Formula

a(n) = 10^(2*n) - 10^n - 1.

Extensions

Offset corrected by Jon E. Schoenfield, Jun 17 2018