A086697 Left-truncatable semiprimes, i.e., semiprimes in which repeatedly deleting the leftmost digit gives a semiprime at every step until a single-digit semiprime remains.
4, 6, 9, 14, 26, 34, 39, 46, 49, 69, 74, 86, 94, 134, 146, 169, 194, 214, 226, 249, 274, 314, 326, 334, 339, 346, 386, 394, 446, 469, 514, 526, 586, 614, 626, 634, 649, 669, 674, 694, 734, 746, 749, 794, 849, 869, 886, 914, 926, 934, 939, 949, 974, 1169, 1214
Offset: 1
Examples
a(15)=146 is a term because 146, 46, 6 are all semiprimes.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
- Index entries for sequences related to truncatable primes
Programs
-
Mathematica
ltsQ[n_]:=DigitCount[n,10,0]==0&&AllTrue[FromDigits/@NestList[Rest[ #]&, IntegerDigits[n],IntegerLength[n]-1],PrimeOmega[#]==2&]; Select[ Range[ 1500],ltsQ] (* Harvey P. Dale, Jun 28 2017 *) lt3pQ[n_]:=Module[{idn=IntegerDigits[n]}, FreeQ[idn, 0]&&Union[PrimeOmega/@(FromDigits/@Table[Take[idn, -i], {i, Length[idn]}])]=={2}]; Select[Range[8000], lt3pQ] (* Vincenzo Librandi, Apr 22 2018 *)
-
Python
from sympy import factorint from itertools import islice def issemiprime(n): return sum(factorint(n).values()) == 2 def agen(): semis, digits = [4, 6, 9], "123456789" # can't have 0 while len(semis) > 0: yield from semis cands = set(int(d+str(p)) for p in semis for d in digits) semis = sorted(c for c in cands if issemiprime(c)) print(list(islice(agen(), 55))) # Michael S. Branicky, Aug 04 2022
Comments