cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A089212 Primes p such that p-1 and p+1 are divisible by a fifth power.

Original entry on oeis.org

13121, 20897, 25759, 75329, 80191, 106433, 118751, 137537, 153089, 157951, 176417, 191969, 196831, 207521, 212383, 215297, 230849, 243487, 251263, 274591, 281249, 285281, 313471, 318751, 321247, 324161, 331937, 336799, 347489, 378593
Offset: 1

Views

Author

Cino Hilliard, Dec 09 2003

Keywords

Examples

			13121 is a term since 13121 - 1 = 2^6 * 5 * 41, 13121 + 1 = 2 * 3^8.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=5&&f[p+1]>=5,AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
  • PARI
    \\ Input no. of iterations n, power p and number to subtract and add k.
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }

A166003 Primes p such that p+-1, p+-2 and p+-3 are not squarefree.

Original entry on oeis.org

47527, 186247, 218527, 245149, 269953, 377543, 390449, 432277, 447823, 453053, 469649, 518123, 568177, 584911, 589273, 606323, 632347, 661547, 761347, 831751, 848213, 897577, 913327, 925949, 952253, 1172351, 1205647, 1220347, 1241477
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=2;lst={};Do[p=Prime[n];If[f[p-3]>=q&&f[p-2]>=q&&f[p-1]>=q&&f[p+1]>=q&&f[p+2]>=q&&f[p+3]>=q,AppendTo[lst,p]],{n,6*8!}];lst
    Select[Prime[Range[100000]],NoneTrue[#+{-3,-2,-1,1,2,3},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 17 2018 *)

Extensions

Edited by N. J. A. Sloane, Oct 04 2009

A166000 Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes.

Original entry on oeis.org

12253, 14747, 65173, 83003, 93253, 95747, 109139, 147253, 176747, 213349, 255253, 282253, 284747, 287437, 305267, 311747, 315517, 336253, 338747, 364699, 365747, 444253, 452579, 471253, 525253, 554747, 583789, 633253, 716747, 741253, 743747
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A089201. - R. J. Mathar, Dec 08 2015
Contains all primes == 12253 (mod 27000), and therefore the sequence is infinite. - Robert Israel, Apr 21 2016

Crossrefs

Programs

  • Maple
    filter:= proc(p) local d;
      if not isprime(p) then return false fi;
      for d in [-5,-3,3,5] do
         if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi;
      od;
      true
    end proc:
    select(filter, [seq(t,t=7..10^6,2)]); # Robert Israel, Apr 21 2016
    # alternative
    isA166000 := proc(n)
        if isprime(n) then
                isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ;
        else
                false;
        end if;
    end proc: # R. J. Mathar, Aug 14 2024
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst
  • PARI
    ncf(n)={vecmax(factor(n)[,2])>2};forprime(p=5,1e7,if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5),print1(p","))) /* Charles R Greathouse IV, Oct 05 2009 */

A166001 Primes p such that p-5, p-4, p+4, and p+5 are each divisible by a cube > 1.

Original entry on oeis.org

751379, 2414507, 2839621, 3170371, 4469629, 5736371, 21154909, 22556371, 22991629, 23313371, 23748629, 24338371, 28372621, 31628371, 32079757, 33009629, 41078371, 42270629, 43465307, 44446621, 49746667, 50579339
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-4]>=q&&f[p+4]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst

Extensions

Extended by Charles R Greathouse IV, Oct 09 2009

A166002 Primes p such that p-6, p-5, p+5, and p+6 are each divisible by a cube greater than 1.

Original entry on oeis.org

1934869, 6136619, 11195869, 11845499, 12385381, 33919619, 39139381, 39790381, 52937869, 53209381, 53631131, 54601619, 58690381, 62892131, 67951381, 77212381, 80224619, 88874869, 94544869, 95734381, 99936131, 103805869, 108827869
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-6]>=q&&f[p-5]>=q&&f[p+5]>=q&&f[p+6]>=q,AppendTo[lst,p]],{n,5*9!}];lst

Extensions

Edited by N. J. A. Sloane, Oct 04 2009
Extended and edited by Charles R Greathouse IV, May 12 2010

A086534 Smallest prime p sandwiched between two numbers that are divisible by n-th powers.

Original entry on oeis.org

2, 17, 271, 1249, 13121, 13121, 153089, 1272833, 28146689, 193562623, 652963841, 1378557953, 29096394751, 316431663103, 2191221587969, 15356401156097, 128200797454337, 314394051346433, 314394051346433, 28344942091829249, 201993039632138239, 267803891553271807
Offset: 1

Views

Author

Amarnath Murthy, Aug 17 2003

Keywords

Comments

Conjecture: sequence is finite.

Examples

			a(3) = 271, 270 = 3^3*10 and 272 = 2^3*34. 271 is the smallest such number.
a(4) = 1249, 1248 =2^4*78, 1250 = 5^4*2. 1250 is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    PrimeExponents[n_] := Max[ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[n]]]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {15}]; p = 1; Do[p = NextPrim[p]; b = Min[ PrimeExponents[p - 1], PrimeExponents[p + 1]]; If[ a[[b]] == 0, a[[b]] = p; Print[b, " ", p]], {n, 1, 70000000}]; a

Extensions

Edited and extended by Robert G. Wilson v, Aug 18 2003
a(5) corrected. a(13)-a(22) from Donovan Johnson, Sep 02 2008
Showing 1-6 of 6 results.