cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086754 Pascal's square pyramid read by slices, each slice being read by rows. Each entry in slice n is the sum of the 4 entries above it in slice n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 3, 3, 1, 3, 9, 9, 3, 3, 9, 9, 3, 1, 3, 3, 1, 1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 25, 50, 50, 25, 5, 10, 50, 100, 100, 50, 10, 10, 50, 100, 100, 50, 10, 5, 25, 50, 50, 25, 5, 1, 5, 10
Offset: 1

Views

Author

Jon Perry, Jul 31 2003

Keywords

Comments

Element (i,j) of slice n is the coefficient of x^i * y^j in the expansion of ((1+x)*(1+y))^n. - Eitan Y. Levine, Sep 03 2023

Examples

			The first 4 slices are
  1..1 1..1 2 1..1 3 3 1
  ...1 1..2 4 2..3 9 9 3
  ........1 2 1..3 9 9 3
  ...............1 3 3 1
		

Crossrefs

Consider the sequence s[i, j](n) obtained by considering the (i, j)-th entry of the n-th slice. Then if [i, j]= [3, 2] we get A006002, if [3, 3] we get A000537, if [4, 2] we get A004320, if [4, 3] we get A004282.
Cf. A046816.

Programs

  • Haskell
    a086754 n = a086754_list !! (n-1)
    a086754_list = concat $ concat $ iterate ([[1,1],[1,1]] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
  • Maple
    p:=n->seq(seq(binomial(n,i)*binomial(n,j),j=0..n),i=0..n): seq(p(n),n=0..5); # Emeric Deutsch, Nov 18 2004
  • Mathematica
    A[m_]:=Module[{pt=Table[ConstantArray[1,{i,i}],{i,m}]},For[i=3,i<=m,i++,For[j=2,j<=i-1,j++,pt[[i,j,1]]=pt[[i-1,j-1,1]]+pt[[i-1,j,1]];pt[[i,1,j]]=pt[[i,j,1]];pt[[i,i,j]]=pt[[i,j,1]];pt[[i,j,i]]=pt[[i,j,1]];];For[j=2,j<=i-1,j++,For[k=2,k<=i-1,k++,pt[[i,j,k]]=pt[[i-1,j,k]]+pt[[i-1,j,k-1]]+pt[[i-1,j-1,k]]+pt[[i-1,j-1,k-1]];];];];pt//Flatten]; A[6] (* Robert P. P. McKone, Sep 14 2023, made from the PARI code *)
  • PARI
    { pt=vector(10,i,matrix(i,i,j,k,1)); for (i=3,10, for (j=2,i-1, pt[i][j,1]=pt[i-1][j-1,1]+pt[i-1][j,1]; pt[i][1,j]=pt[i][j,1]; pt[i][i,j]=pt[i][j,1]; pt[i][j,i]=pt[i][j,1]; ); for(j=2,i-1, for (k=2,i-1, pt[i][j,k]=pt[i-1][j,k]+pt[i-1][j,k-1]+pt[i-1][j-1,k]+pt[i-1][j-1,k-1]))); pt }
    

Formula

From Eitan Y. Levine, Sep 03 2023: (Start)
C(n,i)*C(n,j) gives the (i,j) element in slice n, where C(n,k) are the binomial coefficients A007318.
G.f.: 1/(1-z(1+x)(1+y)) = Sum_{n>=0,i=0..n,j=0..n} T(n,i,j) * z^n * x^i * y^j
G.f. for slice n: ((1+x)*(1+y))^n = Sum_{i=0..n,j=0..n} T(n,i,j) * x^i * y^j (End)

Extensions

More terms from Emeric Deutsch, Nov 18 2004