A086754 Pascal's square pyramid read by slices, each slice being read by rows. Each entry in slice n is the sum of the 4 entries above it in slice n-1.
1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 3, 3, 1, 3, 9, 9, 3, 3, 9, 9, 3, 1, 3, 3, 1, 1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 25, 50, 50, 25, 5, 10, 50, 100, 100, 50, 10, 10, 50, 100, 100, 50, 10, 5, 25, 50, 50, 25, 5, 1, 5, 10
Offset: 1
Examples
The first 4 slices are 1..1 1..1 2 1..1 3 3 1 ...1 1..2 4 2..3 9 9 3 ........1 2 1..3 9 9 3 ...............1 3 3 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10416
- The Lost Math Lessons, Pascal's Pyramids, Friday, March 6, 2015.
Crossrefs
Programs
-
Haskell
a086754 n = a086754_list !! (n-1) a086754_list = concat $ concat $ iterate ([[1,1],[1,1]] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Maple
p:=n->seq(seq(binomial(n,i)*binomial(n,j),j=0..n),i=0..n): seq(p(n),n=0..5); # Emeric Deutsch, Nov 18 2004
-
Mathematica
A[m_]:=Module[{pt=Table[ConstantArray[1,{i,i}],{i,m}]},For[i=3,i<=m,i++,For[j=2,j<=i-1,j++,pt[[i,j,1]]=pt[[i-1,j-1,1]]+pt[[i-1,j,1]];pt[[i,1,j]]=pt[[i,j,1]];pt[[i,i,j]]=pt[[i,j,1]];pt[[i,j,i]]=pt[[i,j,1]];];For[j=2,j<=i-1,j++,For[k=2,k<=i-1,k++,pt[[i,j,k]]=pt[[i-1,j,k]]+pt[[i-1,j,k-1]]+pt[[i-1,j-1,k]]+pt[[i-1,j-1,k-1]];];];];pt//Flatten]; A[6] (* Robert P. P. McKone, Sep 14 2023, made from the PARI code *)
-
PARI
{ pt=vector(10,i,matrix(i,i,j,k,1)); for (i=3,10, for (j=2,i-1, pt[i][j,1]=pt[i-1][j-1,1]+pt[i-1][j,1]; pt[i][1,j]=pt[i][j,1]; pt[i][i,j]=pt[i][j,1]; pt[i][j,i]=pt[i][j,1]; ); for(j=2,i-1, for (k=2,i-1, pt[i][j,k]=pt[i-1][j,k]+pt[i-1][j,k-1]+pt[i-1][j-1,k]+pt[i-1][j-1,k-1]))); pt }
Formula
From Eitan Y. Levine, Sep 03 2023: (Start)
C(n,i)*C(n,j) gives the (i,j) element in slice n, where C(n,k) are the binomial coefficients A007318.
G.f.: 1/(1-z(1+x)(1+y)) = Sum_{n>=0,i=0..n,j=0..n} T(n,i,j) * z^n * x^i * y^j
G.f. for slice n: ((1+x)*(1+y))^n = Sum_{i=0..n,j=0..n} T(n,i,j) * x^i * y^j (End)
Extensions
More terms from Emeric Deutsch, Nov 18 2004
Comments