A086770 Numbers k such that the difference between the largest and the smallest prime divisor of k equals the number of prime divisors of k (counted with multiplicity).
1, 15, 20, 30, 35, 50, 112, 143, 168, 189, 252, 280, 315, 323, 378, 392, 420, 441, 525, 588, 630, 700, 735, 882, 899, 980, 1029, 1050, 1372, 1470, 1750, 1763, 2058, 2450, 2816, 3430, 3599, 3773, 4224, 4802, 5183, 5929, 6336, 7040, 9317, 9504, 9856, 10403
Offset: 1
Keywords
Examples
112 is a term because 112 = 2^4*7 with 5 primes dividing it and 7-2=5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:=func
; [1] cat [k:k in [2..10000]| Max(PrimeDivisors(k))-Min(PrimeDivisors(k)) eq f(k)]; // Marius A. Burtea, Dec 16 2019 -
Mathematica
seqQ[1] = True; seqQ[n_] := Plus @@ Last /@ (f = FactorInteger[n]) == f[[-1, 1]] - f[[1, 1]]; Select[Range[10^4], seqQ] (* Amiram Eldar, Dec 16 2019 *)
-
PARI
print1("1, "); for(k=2,10500,my(f=factor(k));if(bigomega(k)==vecmax(f[, 1])-f[1,1],print1(k,", "))) \\ Hugo Pfoertner, Dec 16 2019
Extensions
Name edited by Hugo Pfoertner, Dec 16 2019