cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086788 Primes found among the denominators of the continued fraction rational approximations to Pi.

Original entry on oeis.org

7, 113, 265381, 842468587426513207
Offset: 1

Views

Author

Cino Hilliard, Aug 04 2003; corrected Jul 30 2004

Keywords

Comments

The next term is too large to include.

Examples

			The first 5 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102; of these, the prime denominators are 7 and 113.
		

Crossrefs

Programs

  • PARI
    cfracdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom),print1(denom,",")); ) }
    
  • PARI
    default(realprecision,10^5);
    cf=contfrac(Pi);
    n=0;
    { for(k=1, #cf,  \\ generate b-file
        pq = contfracpnqn( vector(k,j, cf[j]) );
        p = pq[1,1];  q = pq[2,1];
    \\    if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086785
        if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A086788
    ); }
    /* Joerg Arndt, Apr 21 2013 */

Extensions

Offset corrected by Joerg Arndt, Apr 21 2013

A224936 Primes in either the numerator or denominator of continued fraction convergents to Pi.

Original entry on oeis.org

3, 7, 113, 103993, 833719, 265381, 4272943, 411557987, 842468587426513207, 7809723338470423412693394150101387872685594299
Offset: 1

Views

Author

Harvey P. Dale, Apr 20 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[{Numerator[#],Denominator[#]}&/@Convergents[Pi,10000]],PrimeQ]
Showing 1-2 of 2 results.