cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086824 Least positive k such that k! >= n^k.

Original entry on oeis.org

1, 1, 4, 7, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 44, 47, 49, 52, 55, 57, 60, 63, 65, 68, 71, 73, 76, 79, 82, 84, 87, 90, 92, 95, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 125, 128, 130, 133, 136, 138, 141, 144, 147, 149, 152, 155, 157, 160, 163, 166
Offset: 0

Views

Author

Benoit Cloitre, Aug 07 2003

Keywords

Comments

Suggested by Richard-Andre Jeannin (andre-jeannin.richard(AT)wanadoo.fr).

Crossrefs

Variant of A065027. - R. J. Mathar, Sep 12 2008

Programs

  • Maple
    a:= proc(n) option remember; local k; if n<0 then 1 else
          for k from a(n-1) while k! < n^k do od; k fi
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Jan 15 2022
  • Mathematica
    f[n_] := Block[{k = 1}, While[k! < n^k, k++ ]; k]; Table[ f[n], {n, 62}] (* Robert G. Wilson v, Jun 12 2004 *)
  • PARI
    a(n)=if(n<2,1,k=1; while(k!
    				

Formula

a(n) = e*n + O(log(n)); a(n+1)-a(n) = 2 or 3.
Conjecture: for n>3 a(n) = round(e*n-(1/2)*log(2*Pi*n)-1/n). - Benoit Cloitre, Dec 14 2005
Above conjecture is false: For n = 195 we have: a(n) = 526 < 527 = round(exp(1)*n -(1/2)*log(2*Pi*n)-1/n). - Alois P. Heinz, Jan 15 2022

Extensions

Missing a(0)=1 inserted by Alois P. Heinz, Jan 15 2022