cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086831 Ramanujan sum c_n(2).

Original entry on oeis.org

1, 1, -1, -2, -1, -1, -1, 0, 0, -1, -1, 2, -1, -1, 1, 0, -1, 0, -1, 2, 1, -1, -1, 0, 0, -1, 0, 2, -1, 1, -1, 0, 1, -1, 1, 0, -1, -1, 1, 0, -1, 1, -1, 2, 0, -1, -1, 0, 0, 0, 1, 2, -1, 0, 1, 0, 1, -1, -1, -2, -1, -1, 0, 0, 1, 1, -1, 2, 1, 1, -1, 0, -1, -1, 0, 2, 1, 1, -1, 0, 0, -1, -1, -2, 1, -1, 1, 0, -1, 0, 1, 2, 1, -1, 1, 0, -1, 0, 0, 0, -1, 1, -1, 0, -1
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 07 2003

Keywords

Comments

Mobius transform of 1,2,0,0,0,0,... (A130779). - R. J. Mathar, Mar 24 2012

Examples

			a(4) = -2 because the primitive fourth roots of unity are i and -i.  We sum their squares to get i^2 + (-i)^2 = -1 + -1 = -2. - _Geoffrey Critzer_, Dec 30 2015
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, 2nd edn., 1986.

Crossrefs

Cf. A085097, A085384, A085639, A085906 for Ramanujan sums c_n(3), c_n(4), c_n(5), c_n(6).

Programs

  • Maple
    with(numtheory):a:=n->phi(n)*mobius(n/gcd(n,2))/phi(n/gcd(n,2)): seq(a(n),n=1..130); # Emeric Deutsch, Dec 23 2004
  • Mathematica
    f[list_, i_] := list[[i]]; nn = 105; a = Table[MoebiusMu[n], {n, 1, nn}]; b =Table[If[IntegerQ[2/n], n, 0], {n, 1,nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Dec 30 2015 *)
    f[p_, e_] := If[e == 1, -1, 0]; f[2, e_] := Switch[e, 1, 1, 2, -2, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)
  • PARI
    A086831(n) = (eulerphi(n)*moebius(n/gcd(n, 2))/eulerphi(n/gcd(n, 2))); \\ Antti Karttunen, Sep 27 2018

Formula

For a general k >= 1, c_n(k) = phi(n)*mu(n/gcd(n, k)) / phi(n/gcd(n, k)); so c_n(1) = mu(n) = A008683(n).
a(n) = phi(n)*mu(n/gcd(n, 2)) / phi(n/gcd(n, 2)).
Dirichlet g.f.: (1+2^(1-s))/zeta(s). [Titchmarsh eq. (1.5.4)] - R. J. Mathar, Mar 26 2011
Multiplicative with a(2) = 1, a(2^2) = -2, and a(2^e) = 0 for e >= 3, and for an odd prime p, a(p) = -1 and a(p^e) = 0 for e >= 2. - Amiram Eldar, Sep 14 2023
Sum_{k=1..n} abs(a(k)) ~ (8/Pi^2) * n. - Amiram Eldar, Jan 21 2024

Extensions

Corrected and extended by Emeric Deutsch, Dec 23 2004