cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086856 Triangle read by rows: T(n,k) = one-half number of permutations of length n with exactly k rising or falling successions, for n >= 1, 0 <= k <= n-1. T(1,0) = 1 by convention.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 5, 5, 1, 7, 20, 24, 8, 1, 45, 115, 128, 60, 11, 1, 323, 790, 835, 444, 113, 14, 1, 2621, 6217, 6423, 3599, 1099, 183, 17, 1, 23811, 55160, 56410, 32484, 11060, 2224, 270, 20, 1, 239653, 545135, 554306, 325322, 118484, 27152, 3950, 374, 23, 1, 2648395
Offset: 1

Views

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

(1/2) times number of permutations of 1, 2, ..., n such that exactly k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

Examples

			Triangle T(n,k) begins:
    1;
    0,   1;
    0,   2,   1;
    1,   5,   5,   1;
    7,  20,  24,   8,   1;
   45, 115, 128,  60,  11,  1;
  323, 790, 835, 444, 113, 14, 1;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Columns give A001266 (see also A002464), A000130, A000349, A001267, A001268.
Triangle in A001100 divided by 2 (except for T(1, 0)). A010028 transposed.
Row sums give A001710.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    T:= (n, k)-> ceil(coeff(S(n), t, k)/2):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n < 4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; T[n_, k_] := Ceiling[Coefficient[S[n], t, k]/2]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)