A001100
Triangle read by rows: T(n,k) = number of permutations of length n with exactly k rising or falling successions, for n >= 1, 0 <= k <= n-1.
Original entry on oeis.org
1, 0, 2, 0, 4, 2, 2, 10, 10, 2, 14, 40, 48, 16, 2, 90, 230, 256, 120, 22, 2, 646, 1580, 1670, 888, 226, 28, 2, 5242, 12434, 12846, 7198, 2198, 366, 34, 2, 47622, 110320, 112820, 64968, 22120, 4448, 540, 40, 2, 479306, 1090270, 1108612, 650644, 236968, 54304, 7900, 748, 46, 2
Offset: 1
Triangle T(n,k) begins (n >= 1, k = 0..n-1):
1;
0, 2;
0, 4, 2;
2, 10, 10, 2;
14, 40, 48, 16, 2;
90, 230, 256, 120, 22, 2;
646, 1580, 1670, 888, 226, 28, 2;
...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.
- David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag.
-
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
[n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
-(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
end:
T:= (n, k)-> coeff(S(n), t, k):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Jan 11 2013
-
s[n_] := s[n] = If[n < 4, {1, 1, 2*t, 4*t + 2*t^2}[[n + 1]], Expand[(n + 1 - t)*s[n - 1] - (1 - t)*(n - 2 + 3*t)*s[n - 2] - (1 - t)^2*(n - 5 + t)*s[n - 3] + (1 - t)^3*(n - 3)* s[n - 4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; Flatten[ Table[ Table[t[n, k], {k, 0, n - 1}], {n, 1, 10}]] (* Jean-François Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)
A010028
Triangle read by rows: T(n,k) is one-half the number of permutations of length n with exactly n-k rising or falling successions, for n >= 1, 1 <= k <= n. T(1,1) = 1 by convention.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 5, 5, 1, 1, 8, 24, 20, 7, 1, 11, 60, 128, 115, 45, 1, 14, 113, 444, 835, 790, 323, 1, 17, 183, 1099, 3599, 6423, 6217, 2621, 1, 20, 270, 2224, 11060, 32484, 56410, 55160, 23811, 1, 23, 374, 3950, 27152, 118484, 325322, 554306, 545135, 239653
Offset: 1
Triangle T(n,k) begins:
1;
1, 0;
1, 2, 0;
1, 5, 5, 1;
1, 8, 24, 20, 7;
1, 11, 60, 128, 115, 45;
1, 14, 113, 444, 835, 790, 323;
1, 17, 183, 1099, 3599, 6423, 6217, 2621;
...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
-
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
[n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
-(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
end:
T:= (n, k)-> ceil(coeff(S(n), t, n-k)/2):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Dec 21 2012
-
S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; T[n_, k_] := Ceiling[Coefficient[S[n], t, n-k]/2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
A001266
One-half the number of permutations of length n without rising or falling successions.
Original entry on oeis.org
0, 0, 1, 7, 45, 323, 2621, 23811, 239653, 2648395, 31889517, 415641779, 5830753109, 87601592187, 1403439027805, 23883728565283, 430284458893701, 8181419271349931, 163730286973255373, 3440164703027845395, 75718273707281368117, 1742211593431076483419
Offset: 2
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
[n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
-(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
end:
a:= n-> coeff(S(n), t, 0)/2:
seq(a(n), n=2..25); # Alois P. Heinz, Jan 11 2013
-
S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 0]/2; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
CoefficientList[Series[((Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)])/((-1 + x) x) - x - 1)/(2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a[0] == a[1] == 1/2,
a[2] == a[3] == 0}, a, {n, 2, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 16 2001
A383857
Number of permutations of [n] such that precisely one rising or falling succession occurs, but without either n(n-1) or (n-1)n.
Original entry on oeis.org
0, 0, 2, 8, 34, 196, 1366, 10928, 98330, 983036, 10811134, 129714184, 1686103522, 23603603540, 354033474374, 5664286296416, 96289603698346, 1733166940314028, 32929480177913230, 658578501071986616, 13829959293448920434, 304255691156335505924
Offset: 1
a(3) = 2*1 from the permutations 213 and the reverted 312.
a(4) = 2*4 from 1324, 1423, 2314, 3124 and the reverted 4231, 3241, 4132, 4213.
a(5) = 2*17 from the permutations corresponding to A086852(5) = 2*20, without 13542, 24513, 25413, and the reverted 24531, 31542, 31452.
Showing 1-4 of 4 results.
Comments