cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086871 Row sums of A059450.

Original entry on oeis.org

1, 2, 10, 58, 370, 2514, 17850, 130890, 983650, 7536418, 58648810, 462306266, 3683602130, 29620138994, 240059315610, 1958940281322, 16081662931650, 132723191430210, 1100568370427850, 9164925012016506, 76612776253995570
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2003

Keywords

Comments

Hankel transform is A165928. - Paul Barry, Sep 30 2009
Number of skew Dyck paths of semilength n with the down steps coming in two colors. - David Scambler, Jun 21 2013

Examples

			G.f. = 1 + 2*x + 10*x^2 + 58*x^3 + 370*x^4 + 2514*x^5 + 17850*x^6 + 130890*x^7 + ...
		

Programs

  • Mathematica
    Table[SeriesCoefficient[2/(1+Sqrt[(1-9*x)/(1-x)]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (1 + sqrt((1 - 9*x) / (1 - x) + x * O(x^n))), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, n++; 2 * polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Mar 06 2004 */

Formula

a(n) = 2*A059231(n), if n>0.
G.f.: (1 - x - sqrt((1 - x) * (1 - 9*x))) / (4*x) = 2 / (1 + sqrt((1 - 9*x) / (1 - x))) =: y satisfies 0 = (1 - x) * (1 - y) + 2*x*y^2. - Michael Somos, Mar 06 2004
Moment representation: a(n) = (1/(4*Pi))*Integral_{x=1..9} x^n*sqrt(-x^2+10x-9)/x+(1/2)*0^n. - Paul Barry, Sep 30 2009
D-finite with recurrence Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(2*x) - 1/2 + G(0) where G(k) = 1 - 1/(x + x/(1 + 1/G(k+1) )) ; (continued fraction,3-step). - Sergei N. Gladkovskii, Nov 29 2012

Extensions

More terms from Ray Chandler, Sep 17 2003