cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086873 Triangle read by rows in which row n >= 1 gives coefficients in expansion of the polynomial Sum_{k=1..n} (1/n)*binomial(n,k)*binomial(n,k-1)*x^(2k)*(1+x)^(2n-2k) / x^2 in powers of x.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 9, 10, 5, 1, 6, 21, 44, 57, 42, 14, 1, 8, 38, 116, 240, 336, 308, 168, 42, 1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132, 1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429, 1, 14, 119, 700, 3045, 10122, 26173, 53048
Offset: 1

Views

Author

N. J. A. Sloane, Sep 16 2003

Keywords

Comments

Row n has 2n-1 terms.

Examples

			For n=3 the polynomial is 1 + 4x + 9x^2 + 10x^3 + 5x^4.
  1;
  1,  2,  2;
  1,  4,  9,  10,    5;
  1,  6, 21,  44,   57,   42,   14;
  1,  8, 38, 116,  240,  336,  308,   168,    42;
  1, 10, 60, 240,  680, 1392, 2060,  2160,  1530,   660,  132;
  1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429;
		

Crossrefs

A059231 gives row sums.

Programs

  • Maple
    j := 0:f := n->sum(binomial(n,k)*binomial(n,k-1)/n*x^(2*k)*(1+x)^(2*n-2*k),k=1..n): for n from 1 to 15 do p := expand(f(n)/x^2):for l from 0 to 2*n-2 do j := j+1: a[j] := coeff(p,x,l):od:od:seq(a[l],l=1..j); # Sascha Kurz
  • PARI
    for(n=1,8,p=sum(k=1,n,(1/n)*binomial(n,k)*binomial(n,k-1)*x^(2*k)*(1+x)^(2*n-2*k))/x^2; for(i=1,2*n-1,print1(polcoeff(p,i-1) ","); ); print; ); \\ Ray Chandler, Sep 17 2003

Extensions

More terms from Vladeta Jovovic and Ray Chandler, Sep 17 2003