A086873 Triangle read by rows in which row n >= 1 gives coefficients in expansion of the polynomial Sum_{k=1..n} (1/n)*binomial(n,k)*binomial(n,k-1)*x^(2k)*(1+x)^(2n-2k) / x^2 in powers of x.
1, 1, 2, 2, 1, 4, 9, 10, 5, 1, 6, 21, 44, 57, 42, 14, 1, 8, 38, 116, 240, 336, 308, 168, 42, 1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132, 1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429, 1, 14, 119, 700, 3045, 10122, 26173, 53048
Offset: 1
Examples
For n=3 the polynomial is 1 + 4x + 9x^2 + 10x^3 + 5x^4. 1; 1, 2, 2; 1, 4, 9, 10, 5; 1, 6, 21, 44, 57, 42, 14; 1, 8, 38, 116, 240, 336, 308, 168, 42; 1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132; 1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429;
Links
- C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.
Crossrefs
A059231 gives row sums.
Programs
-
Maple
j := 0:f := n->sum(binomial(n,k)*binomial(n,k-1)/n*x^(2*k)*(1+x)^(2*n-2*k),k=1..n): for n from 1 to 15 do p := expand(f(n)/x^2):for l from 0 to 2*n-2 do j := j+1: a[j] := coeff(p,x,l):od:od:seq(a[l],l=1..j); # Sascha Kurz
-
PARI
for(n=1,8,p=sum(k=1,n,(1/n)*binomial(n,k)*binomial(n,k-1)*x^(2*k)*(1+x)^(2*n-2*k))/x^2; for(i=1,2*n-1,print1(polcoeff(p,i-1) ","); ); print; ); \\ Ray Chandler, Sep 17 2003
Extensions
More terms from Vladeta Jovovic and Ray Chandler, Sep 17 2003
Comments