A086880 a(n) = floor( sum(k=0, infinity, k^n/(k!)^2 ) ); related to generalized Bell numbers.
2, 1, 2, 3, 7, 17, 45, 128, 391, 1287, 4524, 16889, 66657, 276982, 1207598, 5507362, 26203307, 129757596, 667358910, 3558097578, 19632277761, 111930731957, 658482495614, 3992062349412, 24911272290567, 159833355923362
Offset: 0
Keywords
Examples
a(5) = floor(1^5/(1!)^2 + 2^5/(2!)^2 + 3^5/(3!)^2 + 4^5/(4!)^2 +...)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..646
Programs
-
Mathematica
Table[Floor[Sum[k^n/(k!)^2,{k,0,Infinity}]],{n,0,20}] (* Vaclav Kotesovec, Jul 31 2014 *) Flatten[{2, 1, Table[Floor[HypergeometricPFQ[ConstantArray[2, n-2], ConstantArray[1, n-1], 1]], {n,2,20}]}] (* Vaclav Kotesovec, May 23 2015 *)
Formula
sum(k>=0, k^n/(k!)^2) = A000994(n)*BesselI(0, 2) + A000995(n)*BesselI(1, 2), using Bessel function values BesselI(0, 2)=2.2795853023..., BesselI(1, 2) = 1.5906368546... (A096789) and where A000994 and A000995 shift 2 places left under binomial transform: A000994={1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, ...} A000995={0, 1, 0, 1, 2, 4, 10, 29, 90, 295, 1030, 3838, ...}.
Comments