cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086880 a(n) = floor( sum(k=0, infinity, k^n/(k!)^2 ) ); related to generalized Bell numbers.

Original entry on oeis.org

2, 1, 2, 3, 7, 17, 45, 128, 391, 1287, 4524, 16889, 66657, 276982, 1207598, 5507362, 26203307, 129757596, 667358910, 3558097578, 19632277761, 111930731957, 658482495614, 3992062349412, 24911272290567, 159833355923362
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Comments

Define B(n) = sum(k=0, infinity, k^n/(k!)^2), then there exists a complex linear relation: B(3) = B(2) + B(1); B(4) = 2*B(3); B(5) = 2*B(4) + B(2); B(6) = 5*B(4) + 3*B(2); B(7) = 7*B(5) + B(3); B(12) = B(11) + 11*B(10); ...

Examples

			a(5) = floor(1^5/(1!)^2 + 2^5/(2!)^2 + 3^5/(3!)^2 + 4^5/(4!)^2 +...)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[k^n/(k!)^2,{k,0,Infinity}]],{n,0,20}] (* Vaclav Kotesovec, Jul 31 2014 *)
    Flatten[{2, 1, Table[Floor[HypergeometricPFQ[ConstantArray[2, n-2], ConstantArray[1, n-1], 1]], {n,2,20}]}] (* Vaclav Kotesovec, May 23 2015 *)

Formula

sum(k>=0, k^n/(k!)^2) = A000994(n)*BesselI(0, 2) + A000995(n)*BesselI(1, 2), using Bessel function values BesselI(0, 2)=2.2795853023..., BesselI(1, 2) = 1.5906368546... (A096789) and where A000994 and A000995 shift 2 places left under binomial transform: A000994={1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, ...} A000995={0, 1, 0, 1, 2, 4, 10, 29, 90, 295, 1030, 3838, ...}.