cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086905 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,floor(k/2)).

Original entry on oeis.org

1, 0, 2, 1, 5, 5, 15, 20, 50, 76, 176, 286, 638, 1078, 2354, 4081, 8789, 15521, 33099, 59279, 125477, 227239, 478193, 873885, 1830271, 3370029, 7030571, 13027729, 27088871, 50469889, 104647631, 195892564, 405187826, 761615284, 1571990936
Offset: 0

Views

Author

Vladeta Jovovic, Sep 19 2003

Keywords

Comments

Knödel walks starting and ending at 0, with n steps.

Crossrefs

First column of triangle A101491.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[k,Floor[k/2]],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 02 2014 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k,k\2)); \\ Michel Marcus, Dec 04 2016

Formula

G.f.: (sqrt((1+2*x)/(1-2*x))-1)/2/x/(1+x).
a(n) ~ 2^(n+3/2) / (3*sqrt(Pi*n)) * (1 - 2/(3*n)+ 3*(-1)^n/(4*n)). - Vaclav Kotesovec, Mar 02 2014