cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086909 Middle side of the first primitive d-arithmetic triangle, where d=A072330(n).

Original entry on oeis.org

4, 26, 28, 52, 76, 98, 124, 134, 158, 148, 172, 206, 218, 266, 244, 316, 292, 362, 388, 388, 364, 364, 386, 398, 518, 556, 494, 532, 556, 508, 532, 602, 602, 628, 724, 676, 758, 746, 734, 854, 916, 806, 868, 916, 844, 892, 866, 868, 1036, 1022, 988, 964, 974
Offset: 1

Views

Author

Lekraj Beedassy, Sep 19 2003

Keywords

References

  • J. A. MacDougall, "Heron Triangles With Sides In Arithmetic Progression", Journal of Recreational Mathematics 31(3) 2002-2003, pp. 192-194.

Crossrefs

Programs

  • Mathematica
    terms = 1000;
    nmax = 12 terms;
    okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&];
    A072330 = Select[Range[nmax], okQ];
    a[n_] := Module[{a, b, c, d, p}, d = If[n <= Length[A072330], A072330[[n]], Print["nmax = ", nmax, " insufficient"]; Exit[]]; If[n==1, 4, For[b = 2d, True, b++, a = b-d; c = b+d; p = (a+b+c)/2; If[IntegerQ[p] && IntegerQ[ Sqrt[p(p-a)(p-b)(p-c)]] && GCD[a, b, c] == 1, Return[b]]]]];
    a /@ Range[terms] (* Jean-François Alcover, Mar 06 2020 *)

Extensions

Extended by Ray Chandler, Jul 03 2004