A086926 Product of Fibonacci and (shifted) triangular numbers.
0, 0, 1, 6, 18, 50, 120, 273, 588, 1224, 2475, 4895, 9504, 18174, 34307, 64050, 118440, 217192, 395352, 714951, 1285350, 2298660, 4091241, 7250221, 12797568, 22507500, 39452725, 68942718, 120132558, 208776974, 361937400, 626015085, 1080441264
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yahia Djemmada, Abdelghani Mehdaoui, László Németh, and László Szalay, The Fibonacci-Fubini and Lucas-Fubini numbers, arXiv:2407.04409 [math.CO], 2024. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
Programs
-
Mathematica
Array[Fibonacci[#] PolygonalNumber[# - 1] &, 33, 0] (* or *) LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 1, 6, 18, 50}, 33] (* or *) CoefficientList[Series[x^2*(1 + 3 x + x^3)/(1 - x - x^2)^3, {x, 0, 32}], x] (* Michael De Vlieger, Dec 17 2017 *)
-
MuPAD
numlib::fibonacci(n)*binomial(n,2) $ n = 0..35; // Zerinvary Lajos, May 09 2008
-
PARI
concat(vector(2), Vec(x^2*(1 + 3*x + x^3) / (1 - x - x^2)^3 + O(x^40))) \\ Colin Barker, Sep 20 2017
Formula
From Franklin T. Adams-Watters, Feb 03 2006: (Start)
a(n) = (n/(n-2)*a(n-1) + n*(n-1))/((n-2)*(n-3))*a(n-2).
G.f.: x^2*(1+3x+x^3)/(1-x-x^2)^3. (End)
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} i * C(n-k-1,k). - Wesley Ivan Hurt, Sep 19 2017
From Colin Barker, Sep 20 2017: (Start)
a(n) = ((-1)*(2^(-1-n)*((1-sqrt(5))^n - (1+sqrt(5))^n)*(-1+n)*n)) / sqrt(5).
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6) for n>5. (End)
Extensions
Definition and more terms from Franklin T. Adams-Watters, Feb 03 2006