cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086926 Product of Fibonacci and (shifted) triangular numbers.

Original entry on oeis.org

0, 0, 1, 6, 18, 50, 120, 273, 588, 1224, 2475, 4895, 9504, 18174, 34307, 64050, 118440, 217192, 395352, 714951, 1285350, 2298660, 4091241, 7250221, 12797568, 22507500, 39452725, 68942718, 120132558, 208776974, 361937400, 626015085, 1080441264
Offset: 0

Views

Author

James FitzSimons (cherry(AT)getnet.net), Sep 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Fibonacci[#] PolygonalNumber[# - 1] &, 33, 0] (* or *)
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 1, 6, 18, 50}, 33] (* or *)
    CoefficientList[Series[x^2*(1 + 3 x + x^3)/(1 - x - x^2)^3, {x, 0, 32}], x] (* Michael De Vlieger, Dec 17 2017 *)
  • MuPAD
    numlib::fibonacci(n)*binomial(n,2) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + 3*x + x^3) / (1 - x - x^2)^3 + O(x^40))) \\ Colin Barker, Sep 20 2017

Formula

From Franklin T. Adams-Watters, Feb 03 2006: (Start)
a(n) = A000045(n)*A000217(n-1) = A000045(n)*n*(n-1)/2.
a(n) = (n/(n-2)*a(n-1) + n*(n-1))/((n-2)*(n-3))*a(n-2).
G.f.: x^2*(1+3x+x^3)/(1-x-x^2)^3. (End)
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} i * C(n-k-1,k). - Wesley Ivan Hurt, Sep 19 2017
From Colin Barker, Sep 20 2017: (Start)
a(n) = ((-1)*(2^(-1-n)*((1-sqrt(5))^n - (1+sqrt(5))^n)*(-1+n)*n)) / sqrt(5).
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6) for n>5. (End)
a(n) = A001629(n-2)+3*A001629(n-3)+A001629(n-5). - R. J. Mathar, May 16 2025

Extensions

Definition and more terms from Franklin T. Adams-Watters, Feb 03 2006