cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086932 Number of non-congruent solutions of x^2 + y^2 == -1 (mod n).

Original entry on oeis.org

1, 2, 4, 0, 4, 8, 8, 0, 12, 8, 12, 0, 12, 16, 16, 0, 16, 24, 20, 0, 32, 24, 24, 0, 20, 24, 36, 0, 28, 32, 32, 0, 48, 32, 32, 0, 36, 40, 48, 0, 40, 64, 44, 0, 48, 48, 48, 0, 56, 40, 64, 0, 52, 72, 48, 0, 80, 56, 60, 0, 60, 64, 96, 0, 48, 96, 68, 0, 96, 64, 72, 0, 72, 72, 80, 0, 96, 96
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{p, e}, Product[{p, e} = pe; Which[p == 2 && e == 1, 2, p == 2 && e > 1, 0, Mod[p, 4] == 1, (p - 1) p^(e - 1), Mod[p, 4] == 3, (p + 1) p^(e - 1)], {pe, FactorInteger[n]}]]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 14 2019 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(-1-i)%n + 1])} \\ Andrew Howroyd, Jul 15 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, if(e>1, 0, 2), p^(e-1)*if(p%4==1, p-1, p+1)))} \\ Andrew Howroyd, Jul 15 2018

Formula

Multiplicative, with a(2^e) = 2 if e = 1 or 0 if e > 1, a(p^e) = (p-1)p^(e-1) if p == 1 (mod 4), a(p^e) = (p+1)p^(e-1) if p == 3 (mod 4). - Vladeta Jovovic, Sep 24 2003
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(8*G) = 0.409404..., where G is Catalan's constant (A006752). - Amiram Eldar, Oct 18 2022

Extensions

More terms from John W. Layman, Sep 25 2003