A086932 Number of non-congruent solutions of x^2 + y^2 == -1 (mod n).
1, 2, 4, 0, 4, 8, 8, 0, 12, 8, 12, 0, 12, 16, 16, 0, 16, 24, 20, 0, 32, 24, 24, 0, 20, 24, 36, 0, 28, 32, 32, 0, 48, 32, 32, 0, 36, 40, 48, 0, 40, 64, 44, 0, 48, 48, 48, 0, 56, 40, 64, 0, 52, 72, 48, 0, 80, 56, 60, 0, 60, 64, 96, 0, 48, 96, 68, 0, 96, 64, 72, 0, 72, 72, 80, 0, 96, 96
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Programs
-
Mathematica
a[n_] := If[n == 1, 1, Module[{p, e}, Product[{p, e} = pe; Which[p == 2 && e == 1, 2, p == 2 && e > 1, 0, Mod[p, 4] == 1, (p - 1) p^(e - 1), Mod[p, 4] == 3, (p + 1) p^(e - 1)], {pe, FactorInteger[n]}]]]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 14 2019 *)
-
PARI
a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(-1-i)%n + 1])} \\ Andrew Howroyd, Jul 15 2018
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, if(e>1, 0, 2), p^(e-1)*if(p%4==1, p-1, p+1)))} \\ Andrew Howroyd, Jul 15 2018
Formula
Multiplicative, with a(2^e) = 2 if e = 1 or 0 if e > 1, a(p^e) = (p-1)p^(e-1) if p == 1 (mod 4), a(p^e) = (p+1)p^(e-1) if p == 3 (mod 4). - Vladeta Jovovic, Sep 24 2003
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(8*G) = 0.409404..., where G is Catalan's constant (A006752). - Amiram Eldar, Oct 18 2022
Extensions
More terms from John W. Layman, Sep 25 2003