cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086966 Number of distinct zeros of x^4-x-1 mod prime(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 2, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 4, 1, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 2, 2, 1, 1, 0, 0, 2, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 24 2003

Keywords

Comments

For the prime modulus 283, the polynomial can be factored as (x+18) (x+168) (x+190)^2, showing that x=93 is a zero of multiplicity 2. The discriminant of the polynomial is 283. - T. D. Noe, Aug 12 2004

Crossrefs

Programs

  • Maple
    f:= n -> nops([msolve(x^4-x-1,ithprime(n))]):
    map(f, [$1..100]); # Robert Israel, Aug 10 2023
  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* T. D. Noe, Sep 24 2003 *)

Extensions

More terms from T. D. Noe, Sep 24 2003