A086990 Expansion of (1+4x-sqrt(1+4x^2))/(4+6x) in powers of x.
0, 1, -2, 3, -4, 6, -10, 15, -20, 30, -52, 78, -96, 144, -282, 423, -420, 630, -1660, 2490, -1304, 1956, -11332, 16998, 3896, -5844, -95240, 142860, 157160, -235740, -983610, 1475415, 2634300, -3951450, -11751660, 17627490, 38381160, -57571740
Offset: 0
Keywords
Examples
a(5) = 6 = upper left term of (-1)*M^5. - _Gary W. Adamson_, Jan 05 2012
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[(1 + 4 x - Sqrt[1 + 4 x^2])/(4 + 6 x), {x, 0, 50}], x] (* Harvey P. Dale, Mar 24 2011 *)
-
PARI
a(n)=polcoeff((1+4*x-sqrt(1+4*x^2+x*O(x^n)))/(4+6*x),n)
Formula
G.f.: (1+4x-sqrt(1+4x^2))/(4+6x).
G.f.: (x-x^2*c(-x^2))/(1+x-x^2*c(-x^2)), c(x) the g.f. of A000108. - Paul Barry, Jun 17 2005
From Gary W. Adamson, Jan 05 2012: (Start)
a(n) is the upper left term of (-1)*M^n, where M = an infinite square production matrix as follows:
-1, -1, 0, 0, 0, 0, ...
-1, 1, -1, 0, 0, 0, ...
-1, 1, 1, -1, 0, 0, ...
-1, 1, 1, 1, -1, 0, ...
-1, 1, 1, 1, 1, -1, ...
... (End)
D-finite with recurrence 2*n*a(n) +3*n*a(n-1) +8*(n-3)*a(n-2) +12*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
Lim sup n->infinity |a(n)|^(1/n) = 2. - Vaclav Kotesovec, Feb 09 2014
Comments