cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087000 Half length of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.

Original entry on oeis.org

3, 1, 3, 8, 9, 11, 14, 23, 29, 30, 4, 22, 48, 2, 17, 54, 56, 21, 65, 4, 23, 74, 39, 83, 89, 90, 96, 49, 15, 111, 114, 116, 15, 25, 128, 131, 134, 14, 73, 156, 55, 168, 58, 16, 183, 93, 189, 191, 194, 100, 102, 209, 70, 216, 16, 76, 230, 77, 243, 245, 249, 251
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

a(n) appears to be the least k such that 10^k+1 is divisible by A028416(n). See A001271. - Michel Marcus, Aug 13 2023

Crossrefs

Formula

a(n) = A002371(A049084(A028416(n)))/2.
a(n) = A055642(A086999(n))/2.
a(n) = A055642(A087001(n)) = A055642(A087002(n)).

A087001 Left half of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.

Original entry on oeis.org

142, 9, 769, 58823529, 526315789, 43478260869, 34482758620689, 21276595744680851063829, 16949152542372881355932203389, 163934426229508196721311475409, 1369, 1123595505617977528089
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

a(n) = floor(A086999(n)/10^A087000(n)); A055642(a(n))=A087000(n);
a(n) + A087002(n) = 10^A087000(n) - 1.

Examples

			p=17: A086999(4)=5882352941176470 -> [58823529][41176470] ->
A087001(4)=58823529, A087002(4)=41176470,
A087001(4)+A087002(4)=58823529+41176470=99999999.
		

References

  • H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, Die periodischen Dezimalbrueche.

A086999 Periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.

Original entry on oeis.org

142857, 90, 769230, 5882352941176470, 526315789473684210, 4347826086956521739130, 3448275862068965517241379310, 2127659574468085106382978723404255319148936170
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

A087001(n)=floor(a(n)/10^A087000(n)), A087002(n)=a(n) mod 10^A087000(n);
A087001(n) + A087002(n) = 10^A087000(n) - 1;
a(n) = A087001(n)*10^A087000(n) + A087002(n).

Examples

			p=73: a(11)=A060283(21)=13698630 -> [1369][8630] ->
A087001(11)=1369, A087002(11)=8630, A087001(11)+A087002(11)=1369+8630=9999.
		

References

  • H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, Die periodischen Dezimalbrueche.

Crossrefs

Showing 1-3 of 3 results.