A087048 Class numbers of indefinite quadratic forms over the integers in two variables with discriminant D = D(n) = A079896(n), n>=1.
1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 4, 1, 1, 2, 4, 2, 1, 2, 1, 1, 2, 4, 2, 1, 2, 2, 2, 2, 4, 1, 4, 2, 4, 3, 1, 2, 2, 4, 1, 4, 2, 1, 4, 4, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 4, 4, 2, 2, 1, 2, 2, 2, 4, 4, 4, 2, 3, 2, 1, 2, 2, 4
Offset: 1
Keywords
Examples
n=3, D(3) = A079896(3) = 12, a(3) = 2 because there are the following two periodic chains of primitive reduced forms [a,b,c] (both with period length 2): [[-2, 2, 1], [1, 2, -2]] and [[-1, 2, 2], [2, 2, -1]]. n=14, D(14) = A079896(14) = 40, a(14) = 2 because there are the following two periodic chains of primitive reduced forms [a,b,c] (with period length 6 resp. 2): [[-3, 2, 3], [3, 4, -2], [-2, 4, 3], [3, 2, -3], [-3, 4, 2], [2, 4, -3]] and [[-1, 6, 1], [1, 6, -1]]. n=36, D(36) = A079896(36) = 89, a(36) = 1 because there is only one periodic chain of primitive reduced forms [a,b,c] (with period length 14): [[ -5, 3, 4], [4, 5, -4], [-4, 3, 5], [5, 7, -2], [-2, 9, 1], [1, 9, -2], [-2, 7, 5], [5, 3, -4], [-4, 5, 4], [4, 3, -5], [-5, 7, 2], [2, 9, -1], [-1, 9, 2], [2, 7, -5]]. See p. 116 of the Scholz/Schoeneberg reference which starts with the form [1, 9, -2]. n=62, D(62) = A079896(62) = 148, a(62) = 3 because there are three periodic chains of primitive reduced forms [a,b,c] (with period length 6 and 6 and 2, resp.): [[-7, 6, 4], [4, 10, -3], [-3, 8, 7], [7, 6, -4], [-4, 10, 3], [3, 8, -7]] and [[-4, 6, 7], [7, 8, -3], [-3, 10, 4], [4, 6, -7], [-7, 8, 3], [3, 10, -4]] and [[-1, 12, 1], [1, 12, -1]]. See p. 116 of the Scholz/Schoeneberg reference which starts with the forms [4, 10, -3] and [3, 10, -4] and [1, 12, -1], resp.
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, ch. 31, pp. 112 ff.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- S. R. Finch, Class number theory [broken link]
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
- Wolfdieter Lang, Table of n-1, D(n), a(n) for n=1, ..., 136
- Keith Matthews, Finding the class number h(d) of primitive binary quadratic forms of positive discriminant d
Programs
-
SageMath
def a(n): i, D, S = 1, Integer(5), [] while(i < n): D += 1; i += 1*(((D%4) in [0, 1]) and (not D.is_square())) for b in range(1, isqrt(D)+1): if ((D-b^2)%4 != 0): continue for a in Integer((D-b^2)/4).divisors(): if gcd([a, b, (D-b^2)/(4*a)]) > 1: continue Q = BinaryQF(a, b, -(D-b^2)/(4*a)) if all([(not Q.is_equivalent(t)) for t in S]): S.append(Q) return len(S) # Robin Visser, May 31 2025
Extensions
Offset corrected by Robin Visser, May 31 2025
Comments