cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107078 Whether n has non-unitary prime divisors.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Paul Barry, May 10 2005

Keywords

Comments

Also the characteristic function of the numbers that are not squarefree: A013929. - Enrique Pérez Herrero, Jul 08 2012
The sequence of partial sums of this sequence is A057627. - Jason Kimberley, Feb 01 2017

Crossrefs

Programs

  • Maple
    seq(1 - abs(numtheory:-mobius(n)), n = 1..101); # Peter Luschny, Jul 27 2023
  • Mathematica
    Table[1-MoebiusMu[n]^2,{n,1,100}] (* Enrique Pérez Herrero, Jul 08 2012 *)
  • Python
    from sympy import mobius
    def A107078(n): return int(not mobius(n)) # Chai Wah Wu, Dec 05 2024

Formula

a(n) = 1 if A056170(n)>0, 0 otherwise.
a(n) = A107079(n) - A013928(n+1).
a(n) = 1 - A008966(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = Sum_{k=0..n-1} (mu(n-k-1) mod 2) - Sum_{k=0..n-1} (mu(n-k) mod 2).
a(n) = abs(mu(n) - (-1)^omega(n)) = (mu(n) - (-1)^omega(n))^2 = abs(A008683(n) - (-1)^A001221(n)). - Enrique Pérez Herrero, Apr 28 2012
a(n) = 1 - mu(n)^2. - Enrique Pérez Herrero, Jul 08 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Jul 24 2022

A096309 a(1)=1; for n > 1, a(n) is the number of levels in the "stacked" prime number factorization of n (prime number factorization of the exponents if necessary and so on ...).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2004

Keywords

Comments

For n > 1: a(n)=1 iff n squarefree.
Sequence A185102 is a (better?) variant, identical except for A185102(1)=0. - M. F. Hasler, Nov 21 2013

Examples

			a(4)=2 because 4=2^2; a(8)=2 because 8=2^3; a(16)=3 because 16=2^(2^2).
a(65536) = a(2^2^2^2) = a(2^^4) = 4 is the first term larger than 3; the index of the first a(n) > 4, n = 2^^5, has 19729 digits. - _M. F. Hasler_, Nov 21 2013
		

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := FactorInteger[n][[All, 2]]; a[n_] := Depth[f[n] //. k_Integer /; k > 1 :> f[k]] - 1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 20 2013 *)
  • PARI
    A096309=n->if(n>1,vecmax(apply(a,factor(n)[,2])))+1 \\ M. F. Hasler, Nov 21 2013

Extensions

More terms from Jean-François Alcover, Nov 20 2013

A087050 Square root of the largest square >1 dividing the n-th nonsquarefree number.

Original entry on oeis.org

2, 2, 3, 2, 4, 3, 2, 2, 5, 3, 2, 4, 6, 2, 2, 3, 4, 7, 5, 2, 3, 2, 2, 3, 8, 2, 6, 5, 2, 4, 9, 2, 2, 3, 2, 4, 7, 3, 10, 2, 6, 4, 2, 3, 2, 11, 2, 5, 3, 8, 2, 3, 2, 2, 12, 7, 2, 5, 2, 3, 2, 4, 9, 2, 2, 13, 3, 2, 5, 4, 6, 2, 2, 3, 8, 14, 3, 10, 2, 3, 4, 2, 6, 2, 4, 15, 2, 2, 3, 2, 4, 11, 9, 2, 7, 2, 5, 6, 16, 2, 3
Offset: 1

Views

Author

Wolfdieter Lang, Sep 08 2003

Keywords

Examples

			n=10, A013929(10) = 27, a(10)^2 = 3^2 = 9. 27 = 9*3.
n=39, A013929(39) = 100, a(39)^2 = 10^2 = 100.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[300], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, factorint
    def A087050(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**(e>>1) for p, e in factorint(m).items() if e>1) # Chai Wah Wu, Jul 22 2024

Formula

a(n)^2 is the largest square factor (from A000290) of the nonsquarefree number A013929(n), n>=1.
a(n) = A000188(A013929(n)). - Amiram Eldar, Feb 11 2021
Sum_{k=1..n} a(k) ~ (n/(2*(zeta(2)-1))) * (log(n) + 3*gamma - 3 - 2*zeta'(2)/zeta(2) - log(1-1/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024
Showing 1-3 of 3 results.