A087077 Total number of elements in all primitive subsets of the integers 1 to n.
0, 1, 2, 5, 8, 21, 29, 73, 105, 193, 288, 677, 853, 1957, 2961, 4913, 6809, 15145, 19605, 43105, 57889, 98849, 151457, 327505, 397825, 784945, 1201189, 2009229, 2772729, 5901185, 7364945, 15609825, 21206049, 36440033, 55602033, 105010513, 127336513, 267374561
Offset: 0
Keywords
Examples
a(4)=8 since the primitive subsets of (1,2,3,4) are ( ) (1) (2) (3) (4) (2,3) (3,4) and these contain eight elements
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, (1994).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..75
- Eric Weisstein's World of Mathematics, Primitive Sequence.
Crossrefs
Formula
a(n) = Sum_{k=1..ceiling(n/2)} k * A355145(n,k). - Alois P. Heinz, Jun 27 2022
Extensions
Terms a(34)-a(37) from Fausto A. C. Cariboni, Feb 02 2022
Comments