cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087080 Number of elements in the coprime subsets of the integers 1 to n.

Original entry on oeis.org

0, 1, 4, 12, 20, 52, 60, 148, 196, 300, 332, 780, 828, 1904, 2080, 2348, 2812, 6352, 6608, 14736, 15632, 17456, 18640, 41152, 42432, 60912, 64800, 80928, 85408, 186304, 187584, 406400, 457344, 497472, 523456, 585280, 596288, 1284224, 1348032, 1457792, 1495424
Offset: 0

Views

Author

Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 12 2003

Keywords

Comments

A coprime set of integers has (m,n)=1 for each pair of integers in the set.

Examples

			a(4)=20 since the 12 coprime subsets of (1,2,3,4) are ( ) (1) (2) (3) (4) (1,2) (1,3) (1,4) (2,3) (3,4) (1,2,3) (1,3 4) and these contain 20 elements.
		

References

  • Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication.

Crossrefs

A087077 gives the number of elements in the primitive subsets. A084422 gives the number coprime subsets. A087081 gives the sum of the elements in coprime subsets.

Programs

  • PARI
    iscoprime(v) = {local(i); for (i=1, #v-1, for (j=i+1, #v, if (gcd(v[i], v[j]) != 1, return (0)););); return (1);}
    a(n) = {sn = vector(n, i, i); pset = vector(1<<#sn, i, vecextract(sn, i-1)); nb = 0; for (i=1, #pset, if (iscoprime(pset[i]), nb += #pset[i]);); return (nb);} \\ Michel Marcus, Jul 12 2013

Extensions

Terms a(38) and beyond from Fausto A. C. Cariboni, Oct 20 2020

A087078 Sum of the elements in the primitive subsets of the integers 1 to n.

Original entry on oeis.org

0, 1, 3, 11, 22, 73, 115, 341, 545, 1141, 1864, 4849, 6505, 16285, 26245, 47093, 68981, 163937, 221957, 517937, 726737, 1312865, 2093745, 4753105, 5953777, 12335601, 19516365, 34112821, 48603289, 107522689, 137759953, 302797921, 422868865
Offset: 0

Views

Author

Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 12 2003

Keywords

Comments

A primitive set has no element that divides another element in the same set.

Examples

			a(4)=22 since the primitive subsets of (1,2,3,4) are ( ) (1) (2) (3) (4) (2,3) (3,4) and the sum of the elements in these subsets is 22.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, (1994).

Crossrefs

A051026 gives the number of primitive subsets. A087077 gives the number of elements in the primitive subsets. A087081 gives the sum of the elements in the coprime subsets.

A355145 Triangle read by rows: T(n,k) is the number of primitive subsets of {1,...,n} of cardinality k; n>=0, 0<=k<=ceiling(n/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 5, 5, 2, 1, 6, 7, 3, 1, 7, 12, 10, 3, 1, 8, 16, 15, 5, 1, 9, 22, 26, 13, 2, 1, 10, 28, 38, 22, 4, 1, 11, 37, 66, 60, 26, 4, 1, 12, 43, 80, 76, 35, 6, 1, 13, 54, 123, 156, 111, 41, 6, 1, 14, 64, 161, 227, 180, 74, 12
Offset: 0

Views

Author

Marcel K. Goh, Jun 20 2022

Keywords

Comments

A set is primitive if it does not contain distinct i and j such that i divides j.
For n >= 2, the alternating row sums equal -1.

Examples

			Triangle T(n,k) begins:
   n/k 0  1  2  3  4  5  6  7  8  9 10 11 12
    0  1
    1  1  1
    2  1  2
    3  1  3  1
    4  1  4  2
    5  1  5  5  2
    6  1  6  7  3
    7  1  7 12 10  3
    8  1  8 16 15  5
    9  1  9 22 26 13  2
   10  1 10 28 38 22  4
   11  1 11 37 66 60 26  4
   12  1 12 43 80 76 35  6
   ...
For n=6 and k=3 the T(6,3) = 3 primitive sets are {2,3,5}, {3,4,5}, and {4,5,6}.
		

Crossrefs

Columns k=0..2 give: A000012, A000027, A161664.
Row sums give A051026.
T(2n,n) gives A174094.
T(2n-1,n) gives A192298 for n>=1.

Formula

Sum_{k=1..ceiling(n/2)} k * T(n,k) = A087077(n). - Alois P. Heinz, Jun 24 2022
Showing 1-3 of 3 results.