cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A087123 a(n) = Fibonacci(n+1) - (-1)^n*Fibonacci(n).

Original entry on oeis.org

1, 2, 1, 5, 2, 13, 5, 34, 13, 89, 34, 233, 89, 610, 233, 1597, 610, 4181, 1597, 10946, 4181, 28657, 10946, 75025, 28657, 196418, 75025, 514229, 196418, 1346269, 514229, 3524578, 1346269, 9227465, 3524578, 24157817, 9227465, 63245986, 24157817
Offset: 0

Views

Author

Paul Barry, Aug 15 2003

Keywords

Comments

Binomial transform is Fibonacci(n) + Fibonacci(2n+1) = A087124(n).

Crossrefs

Programs

  • Maple
    with(combinat): A087123:=n->fibonacci(n+1)-(-1)^n*fibonacci(n): seq(A087123(n), n=0..50); # Wesley Ivan Hurt, Oct 05 2017
  • Mathematica
    MapIndexed[#2 - (-1)^#1*#3 & @@ {First@ #2 - 1, Last@ #1, First@ #1} &, Partition[Fibonacci@ Range[0, 36], 2, 1]] (* or *)
    CoefficientList[Series[(1 - x) (1 + 3 x + x^2)/((1 + x - x^2) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    a(n) = fibonacci(n+1)-(-1)^n*fibonacci(n); \\ Altug Alkan, Oct 06 2017

Formula

a(2n) = Fibonacci(2n-1), a(2n+1) = Fibonacci(2n+3).
G.f.: (1-x)*(1+3*x+x^2)/((1+x-x^2)*(1-x-x^2)). - Colin Barker, Apr 16 2012
a(n) = 3*a(n-2) - a(n-4) for n > 3. - Wesley Ivan Hurt, Oct 05 2017

A192471 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=1+x^n+x^(2n+1).

Original entry on oeis.org

2, 5, 10, 24, 59, 150, 386, 1001, 2606, 6800, 17767, 46458, 121538, 318045, 832418, 2178920, 5703875, 14931950, 39090754, 102338337, 267921062, 701419680, 1836329615, 4807555634, 12586315394, 32951355125, 86267692666, 225851630136
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^3 -> 2+3x
p(2,x)=1+x^2+x^5 -> 5+6x
p(3,x)=1+x^3+x^7 -> 10+15x
p(4,x)=1+x^4+x^9 -> 24+37x.
From these, read
A192471=(2,5,10,24,...) and A087124=(3,6,15,37,...)
		

Crossrefs

Cf. A192232.

Programs

  • Mathematica
    Remove["Global`*"];
    q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n+1);
    Table[Simplify[p[n, x]], {n, 1, 5}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192471 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* A087124 *)

Formula

Empirical G.f.: -x*(2*x-1)*(x^3-3*x^2-x+2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). [Colin Barker, Nov 12 2012]
Showing 1-2 of 2 results.