A087133 Number of divisors of n that are not greater than the greatest prime-factor of n; a(1)=1.
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 3, 2, 5, 2, 3, 3, 2, 3, 5, 2, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 5, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4
Offset: 1
Keywords
Examples
n=28: gpf(28)=7 and divisors = {1,2,4,7,14,28}: 1<=7, 2<=7, 4<=7 and 7<=7, therefore a(28)=4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Eric Weisstein's World of Mathematics, Divisor Function
- Eric Weisstein's World of Mathematics, Greatest Prime Factor
Programs
-
Mathematica
Table[Count[Divisors[n],?(#<=FactorInteger[n][[-1,1]]&)],{n,100}] (* _Harvey P. Dale, May 01 2016 *)
-
PARI
a(n) = if (n==1, 1, my(f = factor(n), gpf = f[#f~,1]); sumdiv(n, d, d <= gpf)); \\ Michel Marcus, Sep 21 2014
-
PARI
a(n) = if (n==1, 1, vecsearch(divisors(n), vecmax(factor(n)[,1]))); \\ Michel Marcus, Jan 21 2019
Comments