A087165 a(n)=1 when n == 1 (mod 4), otherwise a(n) = a(n - ceiling(n/4)) + 1. Removing all the 1's results in the original sequence with every term incremented by 1.
1, 2, 3, 4, 1, 5, 2, 6, 1, 3, 7, 2, 1, 4, 8, 3, 1, 2, 5, 9, 1, 4, 2, 3, 1, 6, 10, 2, 1, 5, 3, 4, 1, 2, 7, 11, 1, 3, 2, 6, 1, 4, 5, 2, 1, 3, 8, 12, 1, 2, 4, 3, 1, 7, 2, 5, 1, 6, 3, 2, 1, 4, 9, 13, 1, 2, 3, 5, 1, 4, 2, 8, 1, 3, 6, 2, 1, 7, 4, 3, 1, 2, 5, 10, 1, 14, 2, 3, 1, 4, 6, 2, 1, 5, 3, 9, 1, 2, 4, 7, 1, 3, 2
Offset: 1
Programs
-
Maple
for n from 1 to 100 do if n mod 4 = 1 then A[n]:= 1 else A[n]:= A[n - ceil(n/4)] + 1 fi od: seq(A[n],n=1..100); # Robert Israel, Aug 05 2014
-
PARI
a(n)=my(s); while(n>4, if(n%4==1, return(s+1)); n=(n\4*3)+max(n%4 - 1,0); s++); s+n \\ Charles R Greathouse IV, Sep 22 2022
Formula
a(4*n) = a(3*n)+1.
a(4*n+1) = 1.
a(4*n+2) = a(3*n+1)+1.
a(4*n+3) = a(3*n+2)+1. - Robert Israel, Aug 05 2014
a(n) < k*log(n) + 4 for n > 1 where k = 1/log(4/3) < 3.5. - Charles R Greathouse IV, Sep 22 2022
Comments