cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087188 Number of partitions of n into distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 13, 14, 16, 18, 20, 24, 27, 30, 35, 37, 42, 47, 51, 59, 64, 72, 81, 88, 98, 109, 120, 134, 147, 163, 179, 195, 216, 236, 258, 284, 310, 339, 371, 403, 441, 480, 523, 572, 621, 675, 734, 796, 865, 937, 1014, 1100, 1189
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Examples

			n=9: 5+3+1 = 6+2+1 = 6+3 = 7+2: a(9)=4;
n=10: 5+3+2 = 6+3+1 = 7+2+1 = 7+3 = 10: a(10)=5.
		

Crossrefs

Programs

  • Haskell
    a087188 = p a005117_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 02 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i <= n && SquareFreeQ[i], b[n-i, i-1], 0]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[Abs[MoebiusMu[k]] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    ok(v)=for(i=2,#v, if(v[i]==v[i-1] || !issquarefree(v[i]), return(0))); #v==0 || issquarefree(v[1])
    a(n)=my(s,u); forpart(v=n, if(ok(v), s++)); s \\ Charles R Greathouse IV, Nov 05 2017

Formula

O.g.f.: product_{i=1,2,...infinity} [1+x^A005117(i)]. - R. J. Mathar, May 16 2008
a(n) ~ exp(sqrt(2*n)) / (2^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015