A087221 Number of compositions (ordered partitions) of n into powers of 4.
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 96, 133, 184, 254, 352, 488, 676, 935, 1294, 1792, 2482, 3436, 4756, 6584, 9116, 12621, 17473, 24190, 33490, 46365, 64190, 88868, 123034, 170334, 235818, 326478, 451994, 625764, 866338, 1199400, 1660510
Offset: 0
Keywords
Examples
A(x) = A(x^4) + x*A(x^4)^2 + x^2*A(x^4)^3 + x^3*A(x^4)^4 + ... = 1 +x + x^2 +x^3 +2x^4 +3x^5 +5x^6 +7x^7 + 10x^8 +...
Links
- T. D. Noe, Table of n, a(n) for n=0..500
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-4^i), i=0..ilog[4](n))) end: seq(a(n), n=0..50); # Alois P. Heinz, Jan 11 2014
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[a[n-4^i], {i, 0, Log[4, n]}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
-
PARI
a(n)=local(A,m); if(n<1,n==0,m=1; A=1+O(x); while(m<=n,m*=4; A=1/(1/subst(A,x,x^4)-x)); polcoeff(A,n))
-
PARI
N=66; x='x+O('x^N); Vec( 1/( 1 - sum(k=0, ceil(log(N)/log(4)), x^(4^k)) ) ) /* Joerg Arndt, Oct 21 2012 */
Formula
G.f.: 1/( 1 - sum(k>=0, x^(4^k) ) ). [Joerg Arndt, Oct 21 2012]
G.f. satisfies A(x) = A(x^4)/(1 - x*A(x^4)), A(0) = 1.
a(n) ~ c * d^n, where d=1.384450093664460722709070772652942206959424183007359023442195..., c=0.526605891697738213614083414993893445498621299371909641096106... - Vaclav Kotesovec, May 01 2014
Comments