cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087450 Smallest number (see comment for representation) with all identical digits having n distinct prime divisors.

Original entry on oeis.org

11, 12, 16, 26, 46, 61, 62, 121, 122, 182, 241, 242, 322, 301, 302, 422, 642, 646, 722, 1006, 601, 602, 842, 962, 1261, 1262, 1201, 1202, 2042, 1681, 1682, 1922, 1801, 1802, 2102, 2402, 2522, 3302, 3361, 3362, 3001, 3002
Offset: 1

Views

Author

Robert G. Wilson v, Sep 06 2003

Keywords

Comments

Sequence represented by citing the number of repeated digits concatenated with that digit, i.e. a(8) = 122.
No more terms < 3600. - David Wasserman, Jun 03 2005

Examples

			a(6) = 86 because 66666666= 2*3*11*73*101*137, is 8 digits long and has 6 distinct prime divisors.
		

Crossrefs

Cf. A087331.

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; Do[k = 1; While[t = Table[j*(10^k - 1)/9, {j, 1, 9}]; l = Map[Length, Map[PrimeFactors, t]]; Position[l, n] == {}, k++ ]; d = t[[Position[l, n][[1, 1]]]]; Print[10k + Position[l, n][[1, 1]]], {n, 0, 17}]

Extensions

More terms from David Wasserman, Jun 03 2005

A268582 Sphenic numbers having identical digits.

Original entry on oeis.org

66, 222, 555, 777, 2222, 3333, 5555, 7777, 22222, 33333, 55555, 77777, 2222222, 3333333, 5555555, 7777777, 22222222222, 33333333333, 55555555555, 77777777777, 1111111111111, 22222222222222222, 33333333333333333, 55555555555555555, 77777777777777777, 6666666666666666666
Offset: 1

Views

Author

Michel Lagneau, Feb 07 2016

Keywords

Comments

Subsequence of A007304 (sphenic numbers: products of 3 distinct primes).
a(1)= A087331(4).

Examples

			222 is in the sequence because 222 = 2*3*37, product of 3 distinct primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 23 do:
      for b from 1 to 9 do:
        x:=(((10^n)- 1)/9)*b:y:=factorset(x):n1:=nops(y):
         if bigomega(x)=3 and n1=3
          then
          printf(`%d, `,x):
          else
         fi:
       od:
    od:
  • Mathematica
    Select[Flatten@ Map[Map[Function[k, FromDigits@ Table[k, {#}]], Range[1, 9]] &, Range@ 20], Length@ # == 3 && Times @@ Last /@ # == 1 &@ FactorInteger@ # &] (* Michael De Vlieger, Feb 07 2016 *)

A199166 Smallest number with all identical digits having n prime factors with multiplicity.

Original entry on oeis.org

2, 4, 8, 88, 888, 222222, 444444, 888888, 444444444444, 888888888888, 444444444444444444, 888888888888888888, 888888888888888888888888, 222222222222222222222222222222, 444444444444444444444444444444, 888888888888888888888888888888
Offset: 1

Views

Author

Michel Lagneau, Nov 03 2011

Keywords

Examples

			a(7) = 444444 = 2^2*3*7*11*13*37 has 7 prime factors with multiplicity, hence 444444 is in the sequence.
		

Crossrefs

Cf. A087331.

Programs

  • Maple
    with(numtheory):for n from 1 to 17 do:i:=0:for k from 1 to 60 while(i=0)do:for a from 1 to 9 while(i=0)do:x:=((10^k- 1)/9)*a:if bigomega(x)=n then i:=1:printf(`%d, `,x):else fi:od:od:od:
  • Mathematica
    Table[digs = 1; While[i = 1; While[num = FromDigits[Table[i, {digs}]]; stop = (i > 9) || PrimeOmega[num] == n; ! stop, i++]; i > 9, digs++]; num, {n, 16}] (* T. D. Noe, Nov 03 2011 *)

Formula

min{ A010785(k): A001222(A010785(k)) = n}. - R. J. Mathar, Nov 03 2011
Showing 1-3 of 3 results.