cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087395 Primes in which the frequency of every digit is the same and is at least 2.

Original entry on oeis.org

11, 100313, 107071, 110909, 114343, 115757, 116969, 117373, 117979, 118787, 119797, 121727, 127217, 127271, 131939, 133717, 133919, 134341, 136163, 136361, 137713, 140401, 141499, 142421, 143413, 145451, 149419, 149491, 155717, 157571
Offset: 1

Views

Author

Amarnath Murthy, Sep 10 2003

Keywords

Comments

If d is prime, the only terms with d digits are repunit primes (A004022). - Robert Israel, Nov 18 2022

Examples

			100313 is a term in which each of the digits 1, 3 and 0 occurs with frequency 2.
		

Crossrefs

Contains A004022.

Programs

  • Maple
    filter:= proc(n) local L,d,S;
      if not isprime(n) then return false fi;
      L:= convert(n,base,10);
      S:={seq(numboccur(d,L),d=convert(L,set))};
      nops(S) = 1 and S[1]>=2
    end proc:
    select(filter, [seq(i,i=11 .. 200000, 2)]); # Robert Israel, Nov 18 2022
  • Mathematica
    fpQ[n_]:=Module[{dc=Union[Cases[DigitCount[n],Except[0]]]}, First[dc]>1 &&Length[dc]==1]; Select[Prime[Range[14500]],fpQ] (* Harvey P. Dale, Apr 22 2011 *)
  • Python
    # see linked program for a faster version
    from sympy import isprime
    from collections import Counter
    from itertools import count, islice
    def ok(n):
        cv = Counter(str(n)).values()
        return min(cv) >= 2 and len(set(cv)) == 1 and isprime(n)
    def agen():
        evdigs = (k for d in count(2, 2) for k in range(10**(d-1)+1, 10**d, 2))
        yield from (k for k in evdigs if ok(k))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Nov 18 2022

Extensions

Corrected and extended by David Wasserman, May 31 2005