cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087412 a(n) is the number of solutions to x^3 + y^3 == 1 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 8, 18, 10, 11, 12, 6, 12, 15, 16, 17, 36, 24, 20, 18, 22, 23, 24, 25, 12, 54, 24, 29, 30, 33, 32, 33, 34, 30, 72, 24, 48, 18, 40, 41, 36, 33, 44, 90, 46, 47, 48, 42, 50, 51, 24, 53, 108, 55, 48, 72, 58, 59, 60
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 21 2003

Keywords

Crossrefs

Cf. A087786.

Programs

  • Mathematica
    a[n_] := Module[{v = Table[0, {n}]}, For[i = 0, i <= n-1, i++, v[[Mod[i^3, n] + 1]]++]; Sum[v[[i+1]] v[[Mod[1-i, n] + 1]], {i, 0, n-1}]];
    a /@ Range[1, 60] (* Jean-François Alcover, Sep 17 2019, after Andrew Howroyd *)
  • PARI
    a(n) = {nb = 0; for (x = 0, n-1, for (y = 0, n-1, if (Mod(x^3,n) + Mod(y^3,n) == Mod(1, n), nb++););); nb;} \\ Michel Marcus, Aug 06 2013
    
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]*v[(1-i)%n + 1])} \\ Andrew Howroyd, Jul 17 2018

Formula

From Andrew Howroyd, Jul 17 2018: (Start)
a(p^e) = p^e for p prime and p mod 3 = 2.
Conjecture: a(3^e) = 2*3^e for e > 1.
a(p^e) = p^(e-1)*(p - 1 + Sum_{b=1..p-1} Legendre(12*b^(-1) - 3*b^2, p)) for p prime and p <> 3.
The final formula arises from factoring x^3 + y^3 as (x + y)*(x*2 - x*y + y^2), then substituting b = x + y and counting the solutions to the resulting quadratic equation 3*x^2 - 3*b*x + b^2 == b^(-1) (mod p) for each nonzero value of b. (End)

Extensions

More terms from Michel Marcus, Aug 06 2013