A087412 a(n) is the number of solutions to x^3 + y^3 == 1 (mod n).
1, 2, 3, 4, 5, 6, 6, 8, 18, 10, 11, 12, 6, 12, 15, 16, 17, 36, 24, 20, 18, 22, 23, 24, 25, 12, 54, 24, 29, 30, 33, 32, 33, 34, 30, 72, 24, 48, 18, 40, 41, 36, 33, 44, 90, 46, 47, 48, 42, 50, 51, 24, 53, 108, 55, 48, 72, 58, 59, 60
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A087786.
Programs
-
Mathematica
a[n_] := Module[{v = Table[0, {n}]}, For[i = 0, i <= n-1, i++, v[[Mod[i^3, n] + 1]]++]; Sum[v[[i+1]] v[[Mod[1-i, n] + 1]], {i, 0, n-1}]]; a /@ Range[1, 60] (* Jean-François Alcover, Sep 17 2019, after Andrew Howroyd *)
-
PARI
a(n) = {nb = 0; for (x = 0, n-1, for (y = 0, n-1, if (Mod(x^3,n) + Mod(y^3,n) == Mod(1, n), nb++););); nb;} \\ Michel Marcus, Aug 06 2013
-
PARI
a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]*v[(1-i)%n + 1])} \\ Andrew Howroyd, Jul 17 2018
Formula
From Andrew Howroyd, Jul 17 2018: (Start)
a(p^e) = p^e for p prime and p mod 3 = 2.
Conjecture: a(3^e) = 2*3^e for e > 1.
a(p^e) = p^(e-1)*(p - 1 + Sum_{b=1..p-1} Legendre(12*b^(-1) - 3*b^2, p)) for p prime and p <> 3.
The final formula arises from factoring x^3 + y^3 as (x + y)*(x*2 - x*y + y^2), then substituting b = x + y and counting the solutions to the resulting quadratic equation 3*x^2 - 3*b*x + b^2 == b^(-1) (mod p) for each nonzero value of b. (End)
Extensions
More terms from Michel Marcus, Aug 06 2013