cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087413 a(n) = Sum_{k=1..n} C(3*k,k)/3.

Original entry on oeis.org

1, 6, 34, 199, 1200, 7388, 46148, 291305, 1853580, 11868585, 76380825, 493606725, 3201081873, 20821158233, 135776966761, 887393271310, 5811082966885, 38119865826420, 250447855600320, 1647729357535485, 10854207824989830, 71581930485576630
Offset: 1

Views

Author

Benoit Cloitre, Oct 21 2003

Keywords

Crossrefs

Cf. A188675: Sum_{k=0..n} binomial(3*k,k).
Cf. A263134: Sum_{k=0..n} binomial(3*k+1,k).

Programs

Formula

G.f.: 1/((3*g-1)*(g^3-2*g^2+g-1)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Recurrence: 2*n*(2*n-1)*a(n) = (31*n^2-29*n+6)*a(n-1) - 3*(3*n-2)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(3*n+5/2)/(23*2^(2*n+1)*sqrt(Pi)*sqrt(n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = Sum_{k=1..n} binomial(3*k-1,k-1). [Bruno Berselli, Oct 10 2015]