A135053
Greatest integer M(i)=n such that A085427(n)=A085427(n-1)/2 and k(i+1)>k(i) with A085427(n)=least k such that k*2^n-1 is prime ( Mersenne prime when k=1).
Original entry on oeis.org
2, 21, 23, 80, 96, 111, 168, 230, 281, 347, 558, 704
Offset: 1
A085427 =3,2,1,1,2,1,2,1,5,7,5,3,2,1,5,4,2,1,2,1,14,7,26,13,39,22
A(2)=1,A(1)=2 so A(2)=A(1)/2 so M(1)=1
A(5)=1,A(4)=2 but A(5)=A(2) ..........
A(21)=7,A(20)=14 A(21)=A(20)/2 and A(21)>A(2) so M(2)=21
A135054
Greatest integer K(i)=A085427(n) such that A085427(n)=A085427(n-1)/2 and K(i+1)>K(i) with A085427(n)=least k such that k*2^n-1 is prime ( Mersenne prime when k=1).
Original entry on oeis.org
1, 7, 13, 15, 17, 75, 102, 173, 181, 229, 513, 539
Offset: 1
A085427 =3,2,1,1,2,1,2,1,5,7,5,3,2,1,5,4,2,1,2,1,14,7,26,13,39,22
A(2)=1,A(1)=2 so A(2)=A(1)/2 so K(1)=1
A(5)=1,A(4)=2 but A(5)=A(2) ..........
A(21)=7,A(20)=14 A(21)=A(20)/2 and A(21)>A(2) so K(2)=7
Showing 1-2 of 2 results.