A087426 a(n) = S(n,4) where S(n,m) = sum(k=0,n,binomial(n,k)*Fibonacci(m*k)).
0, 3, 27, 216, 1701, 13365, 104976, 824499, 6475707, 50860872, 399466485, 3137450517, 24641856288, 193539651939, 1520080160859, 11938864580280, 93769059774789, 736471756750581, 5784324272782128, 45430672644283923
Offset: 0
Links
- M. Griffiths, Families of Sequences From a Class of Multinomial Sums, J. Int. Seq. 15 (2012) # 12.1.8
- Index entries for linear recurrences with constant coefficients, signature (9,-9).
Formula
a(n) = 9*a(n-1)-9*a(n-2).
a(n) = (1/sqrt(5))*(((9+3*sqrt(5))/2)^n-((9-3*sqrt(5))/2)^n).
a(n) = 3^n*F(2n). - Benoit Cloitre, Sep 13 2005
G.f.: 3*x / (9*x^2-9*x+1). - Colin Barker, Jun 26 2013
E.g.f.: 2*exp(9*x/2)*sinh(3*sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Feb 23 2025