cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087443 Least integer of each prime signature ordered first by sum of exponents and then by least integer value.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1680, 1800, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 960, 1296, 1440
Offset: 0

Views

Author

Ray Chandler, Sep 04 2003

Keywords

Comments

A025487 in a different order.

Examples

			1;
2;
4,6;
8,12,30;
16,24,36,60,210;
32,48,72,120,180,420,2310;
64,96,144,216,240,360,840,900,1260,4620,30030;
128,192,288,432,480,720,1080,1680,1800,2520,6300,9240,13860,60060,510510;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l)
          `if`(n=0, [mul(ithprime(t)^l[t], t=1..nops(l))],
          `if`(i=1, b(0, 0, [l[], 1$n]), [b(n, i-1, l)[],
          `if`(i>n, [], b(n-i, i, [l[], i]))[]]))
        end:
    T:= n-> sort(b(n$2, []))[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Jun 13 2012
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, Join[{Product[Prime[t]^l[[t]], {t, 1, Length[l]}]}], If[i == 1, b[0, 0, Join[l, Table[1, {n}]]], Join[b[n, i - 1, l], If[i > n, {}, b[n - i, i, Append[l, i]]]]]];
    T[n_] := Sort[b[n, n, {}]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)