A087443 Least integer of each prime signature ordered first by sum of exponents and then by least integer value.
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1680, 1800, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 960, 1296, 1440
Offset: 0
Examples
1; 2; 4,6; 8,12,30; 16,24,36,60,210; 32,48,72,120,180,420,2310; 64,96,144,216,240,360,840,900,1260,4620,30030; 128,192,288,432,480,720,1080,1680,1800,2520,6300,9240,13860,60060,510510;
Links
- Alois P. Heinz, Rows n = 0..26, flattened
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0, [mul(ithprime(t)^l[t], t=1..nops(l))], `if`(i=1, b(0, 0, [l[], 1$n]), [b(n, i-1, l)[], `if`(i>n, [], b(n-i, i, [l[], i]))[]])) end: T:= n-> sort(b(n$2, []))[]: seq(T(n), n=0..10); # Alois P. Heinz, Jun 13 2012
-
Mathematica
b[n_, i_, l_] := b[n, i, l] = If[n == 0, Join[{Product[Prime[t]^l[[t]], {t, 1, Length[l]}]}], If[i == 1, b[0, 0, Join[l, Table[1, {n}]]], Join[b[n, i - 1, l], If[i > n, {}, b[n - i, i, Append[l, i]]]]]]; T[n_] := Sort[b[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
Comments