A087446 Numbers that are congruent to {1, 6} mod 15.
1, 6, 16, 21, 31, 36, 46, 51, 61, 66, 76, 81, 91, 96, 106, 111, 121, 126, 136, 141, 151, 156, 166, 171, 181, 186, 196, 201, 211, 216, 226, 231, 241, 246, 256, 261, 271, 276, 286, 291, 301, 306, 316, 321, 331, 336, 346, 351, 361, 366, 376, 381, 391, 396, 406
Offset: 1
Links
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1)
Programs
-
Mathematica
#+{1,6}&/@(15*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,6,16},60] (* Harvey P. Dale, Dec 05 2018 *)
Formula
G.f.: x*(1 + 5*x + 9*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (30*x-1)*exp(x)/4 + 5*exp(-x)/4.
a(n) = (18*n-1)/4 + 5*(-1)^n/4.
a(n) = 15*n - a(n-1) - 23, with a(1)=1. - Vincenzo Librandi, Aug 08 2010
Extensions
Editing: rewording of Kival Ngaokrajang's comment. - Wolfdieter Lang, Dec 06 2014
Comments