A087447 a(0) = a(1) = 1; for n > 1, a(n) = (n+2)*2^(n-2).
1, 1, 4, 10, 24, 56, 128, 288, 640, 1408, 3072, 6656, 14336, 30720, 65536, 139264, 294912, 622592, 1310720, 2752512, 5767168, 12058624, 25165824, 52428800, 109051904, 226492416, 469762048, 973078528, 2013265920, 4160749568
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Mathematica
Join[{1, 1}, Table[(n + 2) 2^(n - 2), {n, 2, 30}]] (* Harvey P. Dale, Feb 22 2011 *)
-
Python
def A087447(n): return n+2<
1 else 1 # Chai Wah Wu, Oct 03 2024
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*(2k+1). - Paul Barry, Nov 29 2004
From Colin Barker, Mar 23 2012: (Start)
G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^2.
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. (End)
E.g.f.: (1 - x + exp(2*x)*(1 + x))/2. - Stefano Spezia, Jan 31 2023
Extensions
Definition corrected (by a factor of 2) by R. J. Mathar, Feb 21 2009
Comments