A087610 Number of (-1,0,1) polynomials of degree-n irreducible over the integers.
3, 5, 12, 34, 104, 292, 916, 2791, 8660, 26538, 81584, 248554
Offset: 1
Examples
a(2) = 5 because 1+x+x^2, 1+x^2, 1-x+x^2, -1+x+x^2, -1-x+x^2 are irreducible over the integers.
Links
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
Crossrefs
Programs
-
Maple
F:= proc(n) local T, count, t,x,p; if n::odd then T:= combinat:-cartprod([[-1,0,1]$(n-1),[1]]) else T:= combinat:-cartprod([[-1,0,1]$(n-1),[-1,1]]) fi; count:= 0; while not T[finished] do t:= T[nextvalue](); p:= x^n + add(t[i]*x^(n-i),i=1..n); if irreduc(p) then count:= count+1 fi; od; if n::odd then 2*count else count fi; end proc: 3, seq(F(n),n=2..11); # Robert Israel, Dec 10 2015
-
Mathematica
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 3, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 3^n-1}]; cnt, {n, 10}]
Extensions
a(11) and a(12) from Robert Israel, Dec 10 2015
Comments