cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087482 Number of binary polynomials of degree n irreducible over the integers.

Original entry on oeis.org

2, 2, 2, 6, 8, 21, 34, 84, 150, 331, 614, 1417, 2638, 5508, 10874, 23437, 44862, 95887, 185238, 390297, 765510, 1557427, 3043918, 6525948, 12706892, 25836122, 51135384, 105070336, 206266718, 426254492
Offset: 1

Views

Author

T. D. Noe, Sep 09 2003

Keywords

Comments

A binary polynomial is defined as a monic polynomial whose remaining coefficients are either 0 or 1. For each n, there are 2^n polynomials to consider.

Crossrefs

Cf. A087481 (irreducible polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1).
Cf. A001037 (irreducible polynomials over GF(2)).

Programs

  • Mathematica
    Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 2, n]); If[Irreducible[p, 0], cnt++ ], {i, 0, 2^n-1}]; cnt, {n, 16}]
  • PARI
    a(n)= { if( n<=2, return(2)); my(d, P, ct=0, x='x);  forstep (k=1, 2^n-1, 2, P=x^n+Pol(binary(k),x); ct+=polisirreducible(P) );  return(ct); }
    for(n=1,30,print1(a(n),", ")); \\ Joerg Arndt, Dec 22 2014

Formula

a(n) >= A001037(n). - Joerg Arndt, Dec 22 2014

Extensions

Added more terms, Joerg Arndt, Dec 22 2014
a(23)-a(30) from Max Alekseyev, May 07 2022