cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087490 Primes p such that 4^p - 3^p is composite.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 307
Offset: 1

Views

Author

Cino Hilliard, Oct 26 2003

Keywords

Comments

Primes not in A059801. - Robert Israel, Nov 03 2024

Crossrefs

Primes p such that k^p - (k-1)^p is composite: A087489 (k=3), this sequence (k=4), A087685 (k=5), A087749 (k=6), A087759 (k=7), A087763 (k=8), A087894 (k=9), A087895 (k=10).

Programs

  • Maple
    filter:= p -> isprime(p) and not isprime(4^p-3^p):
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Nov 03 2024
  • Mathematica
    Select[Prime[Range[70]],CompositeQ[4^#-3^#]&] (* Harvey P. Dale, Mar 14 2025 *)
  • PARI
    apmb(a,b,n) = { forprime(x=2,n, y=a^x-b^x; if(!ispseudoprime(y), print1(x","); ) ) }

Extensions

Offset corrected by Mohammed Yaseen, Jul 18 2022